摘要
采用超声辅助磨削对MI工艺制备的SiCf/SiC复合材料表面进行磨削加工,研究了进给速度对复合材料性能的影响。结果表明:采用超声辅助磨削加工SiCf/SiC复合材料表面时,加工区域出现纤维脱粘、断裂、破碎及基体裂纹和脱落现象,且纤维与基体界面会有裂纹产生。当进给速度提高时,复合材料表面损伤加重,导致其比例极限强度和最大载荷降低。进给速度由400 mm/min提高至1 000 mm/min时,SiCf/SiC复合材料的拉伸强度和弯曲强度分别降低4.7%和20.6%。
SiCf/SiC复合材料是以SiC连续纤维为增强体,SiC陶瓷为基体的复合材料。这种材料具有耐磨、耐高温、抗蠕变、耐腐蚀、抗烧伤等优
SiCf/SiC陶瓷基复合材料典型构件的制备过程中,需要通过机械加工实现典型构件的最终结构。但由于SiCf/SiC复合材料具有典型的各向异性特征,基体材料具有典型的脆性特征。且连续增强体纤维与基体相之间的界面相也易损伤。因此机械加工会对SiCf/SiC陶瓷基复合材料造成明显损伤,使复合材料中出现纤维脱落、基体破碎等现象,从而降低复合材料的性能,进而影响SiCf/SiC陶瓷基复合材料典型构件的使用寿
目前关于SiCf/SiC陶瓷基复合材料加工具有较多报道。更多关注的不同加工方式对SiCf/SiC陶瓷基复合材料微观形貌等的影
本文采用超声辅助磨削加工SiCf/SiC陶瓷基复合材,通过对不同进给速度加工后复合材料的性能、表面形貌等测试,研究进给速度对复合材料的性能影响,为SiCf/SiC陶瓷基复合材料类零件的高效低损伤加工提供研究基础。
该材料选用国产的连续SiC纤维为增强体,采用料浆浸渍法制备SiC纤维预浸料。将SiC纤维预浸料正交铺层制备SiC纤维预制体。最后采用熔渗工艺(Melt infiltration, MI)工艺制备试验用SiCf/SiC陶瓷基复合材料,具体熔渗工艺制备过程参见文献[

图2 SiCf/SiC复合材料的拉伸和弯曲强度
Fig.2 Flexural and tensile strength of SiCf/SiC composite

图3 载荷位移曲线
Fig.3 Load-displacement curve

图4 SiCf/SiC复合材料加工表面形貌
Fig.4 Machined surfaced of SiCf/SiC composite
注: Sample-A 的低倍(a)和高倍(b)照片; Sample-B的低倍(c)和高倍(d)照片。

图5 加工表面的三维形貌图
Fig.5 3D surface morphology of machined surfaced
注: (a)Sample-A; (b)Sample-B。

图6 加工表面的微观形貌
Fig.6 SEM images of machined surfaced
注: (a)、(b)是Sample-A;(c)、(d)是Sample-B。
在超声辅助磨削加工过程中,材料的去除机理分为两个不同阶段。一个是韧性区去除,另一个阶段是脆性区去除。当磨削加工的实际深度由0逐渐增大并超过临界加工深度时,加工过程由韧性区去除阶段转变为脆性区去除阶段。对于MI工艺制备的SiCf/SiC复合材料,其磨削加工时的临界加工深度值与材料本身的物理特性相关,与超声辅助加工参数无关,而实际加工深度与磨削力F正相

图7 超声磨削加工示意图
Fig. 7 Schematic of ultrasonic machining-drilling

图8 加工区表面缺陷
Fig.8 Machining defects on machined surface
磨削力与进给速度存在正相
MI工艺制备的SiCf/SiC陶瓷基复合材料具有典型的硬脆特性,因此对加工表面的微裂纹较为敏感。采用磨削加工在试样表面形成微小裂纹后,在复合材料试样受载时,裂纹源开始扩展,导致复合材料强度下
采用超声辅助机械加工的方法对SiCf/SiC复合材料表面进行磨削加工,进给速度较高时,金刚石磨头对SiC纤维和基体的磨削力增大。大磨削力的加工过程将导致实际磨削加工深度大于SiCf/SiC复合材料的临界加工深度,材料去除机理由韧性区去除转变为脆性区去除。此时纤维与基体的界面及SiC基体中出现裂纹,复合材料表面部分区域出现纤维脱黏、断裂、破碎及脱落等现象,加工区形成严重的损伤。本文中,当进给速度由400 mm/min提高至1 000 mm/min时,SiCf/SiC复合材料表面加工损伤加重,复合材料的拉伸强度和弯曲强度别下降了4.7%和20.6%。因此,在加工过程中,应根据MI-SiCf/SiC复合材料特性,选择适合的进给速度等加工参数,使磨削力F小于纤维与基体的结合强度,从而降低加工损伤,提高复合材料产品的综合性能。
参考文献
刘虎, 杨金华, 周怡然,等. 国外航空发动机用SiCf/SiC复合材料的材料级性能测试研究进展[J]. 材料工程, 2018, 46(11):5-16. [百度学术]
LIU H, YANG J H, ZHOU Y R, et al. Progress in coupon tests of SiCf/SiC ceramic matrix composites used for aero engines[J].Journal of Materials Engineering, 2018, 46(11):5-16. [百度学术]
JONES R H , GIANCARLI L , HASEGAWA A , et al. Promise and challenges of SiCf/SiC composites for fusion energy applications[J]. Journal of Nuclear Materials, 2002, 307(3):1057-1072. [百度学术]
KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials, 2014, 455(1-3):387-397. [百度学术]
焦健,陈明伟.新一代发动机高温材料-陶瓷基复合材料的制备、性能及应用[J].航空制造技术, 2014(7): 62-69. [百度学术]
JIAO J, CHEN M W. New generation of high temperature material for engine preparation, property and application of ceramic matrix composites [J]. Aeronautical Manufacturing Technology, 2014(7): 62-69. [百度学术]
王鸣, 董志国, 张晓越,等. 连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用[J]. 航空制造技术, 2014(6):10-13. [百度学术]
WANG M, DONG Z G, ZHANG X Y,et al. Application of continuous fiber reinforced ceramic matrix composites in aeroengine [J]. Aeronautical Manufacturing Technology, 2014(6):10-13. [百度学术]
AN Q, CHEN J, MING W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Journal of Aeronautics, 2020,34(4):540-567. [百度学术]
焦健,王宇,邱海鹏,等.陶瓷基复合材料不同加工工艺的表面形貌分析研究[J].航空制造技术,2014(6):89-92. [百度学术]
JIAO J, WANG Y,QIU H P, et al. Morphology analysis of SiCf/SiC ceramic matrix composites machining surface with different processing technology[J]. Aeronautical Manufacturing Technology, 2014(6):89-92. [百度学术]
张文武,张天润,焦健.陶瓷基复合材料加工工艺评价[J]. 航空制造技术,2014(6):45-49. [百度学术]
ZHANG W W, ZHANG T R,JIAO J. Comment on ceramic matrix composites machining processes[J]. Aeronautical Manufacturing Technology, 2014(6):45-49. [百度学术]
FENG P, WANG J, ZHANG J, et al. Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites [J]. Ceramics International, 2017, 43(1):791-799. [百度学术]
康仁科,赵凡,鲍岩,等.超声辅助磨削SiCf/SiC陶瓷基复合材料[J].金刚石与磨料磨具工程,2019,39(4):85-91. [百度学术]
KANG R K,ZHAO F,BAO Y, et al. Ultrasonic assistedg rinding of SiCf/SiC composites[J],Diamond & Abrasives Engineering,2019,39(4):85-91. [百度学术]
LIU Q, HUANG G, XU X, et al. Influence of grinding fiber angles on grinding of the 2D-Cf /C-SiC composites[J]. Ceramics International, 2018, 44(11):12774-12782. [百度学术]
CORMAN G S,LUTHRA K L.BANSAL N P, ed. Silicon Melt Infiltrated Ceramic Composites (HiPerComp™). Handbook of Ceramic Composite[D]. Boston: Kluwer Academic Publishers, 2004:99-116. [百度学术]
HE Q C, LI H J, YIN X M, et al. Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C-ZrC-SiC composites fabricated by a multistep method of chemical liquid-vapor deposition [J]. Ceramics International, 2019, 45 (16): 20414-20426. [百度学术]
LI Z C , JIAO Y , DE INES T W , et al. Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments[J]. International Journal of Machine Tools & Manufacture, 2005, 45(12-13):1402-1411. [百度学术]
ZHENG K , XIAO X Z , LIAO W H , et al. Study on rotary ultrasonic machining of sintered zirconia dental ceramics[J]. Journal of Synthetic Crystals, 2013, 42(9):1864-1869. [百度学术]
WANG D, LU S, XU D, et al. Research on material removal mechanism of C/SiC composites in ultrasound vibration-assisted grinding [J]. Materials, 2020, 13(8):1918. [百度学术]
LIU Z , KANG R , LIU H , et al. FEM-based optimization approach to machining strategy for thin-walled parts made of hard and brittle materials[J]. International Journal of Advanced Manufacturing Technology, 2020, 110(5-6):1399-1413. [百度学术]
SHI L W, HONG Z, Jun T J, et al. Investigation on surface micro-crack evaluation of engineering ceramics by rotary ultrasonic grinding machining [J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(1):483-492. [百度学术]
ZHAO S, ZHOU X, YU J, et al. Mechanical properties and in situ crack growth observation of SiC/SiC composites[J]. Ceramics International, 2014, 40(5):7481-7485. [百度学术]