摘要
采用石墨树脂浆料浸渍三维针刺碳毡增强体,热解后得到C/C多孔体,并采用反应熔体浸渗法制备C/SiC复合材料。研究了石墨填料对C/C多孔体的结构以及C/SiC复合材料力学性能的影响。结果表明,石墨树脂浆料浸渍时树脂填充束间小孔形成结构致密的亚结构单元,而石墨可以有效填充胎网层等大孔隙,一次浸渍热解后碳产率有效提高。所得C/SiC复合材料包括C、SiC和Si三相,由于亚结构单元的存在,熔融Si并未渗入纤维束内部,束内碳纤维未受损伤。片层石墨的存在使碳基体/石墨和纤维结合强度提高、纤维脱粘拔出阻力增大,从而使材料强度提高;而且石墨可以使裂纹在扩展时发生偏转,从而避免了复合材料脆性断裂,使其呈现出类似金属的伪塑性断裂行为。制备出的C/SiC复合材料的弯曲断裂强度为118 MPa,最大应变可达1.0%。
C/SiC复合材料具有优异的力学性能、抗烧蚀性能、抗氧化性能和刹车性能,在航空航天等诸多领域具有广阔的应用前
采用RMI方法制备C/SiC复合材料时需要合适的C/C多孔体结构,一方面,孔隙可以成为熔融Si浸渍的通道,足量孔隙可保证RMI过程熔融Si进入C/C多孔材料生成SiC基体;另一方面,要求有足够碳基体,碳基体不仅对纤维产生包覆保护作用,还可以提供足够碳源与Si反
片层石墨具有较高的石墨化度、结晶取向度等特
将日本东丽公司(Toray)生产的聚丙烯腈型T300(12 K)碳纤维编织成三维针刺碳毡作为增强
采用阿基米德排水法测定复合材料的密度和开气孔率。采用日本理学公司Rigaku D/max型X射线衍射仪分析物相组成。使用日本日立公司S-4700扫描电子显微镜二次电子和背散射电子图像获得断口形貌和物相分布。为了得到材料中各成分的具体比例,首先在700 ℃空气气氛中对试样氧化10 h除掉C,然后用HF和HNO3(体积比HF∶HNO3=1∶4)的混合溶液对试样腐蚀48 h,除掉残余Si,得到Si
(1) |
(2) |
式中,P为载荷,L为跨距,b为试样宽度,d为试样厚度,D为实验中梁中心的挠度。

图1 石墨微粉结构
Fig.1 Morphology of graphite power
对石墨树脂料浆浸渍热压后的材料进行热解碳化,所得C/C多孔体的结构如

(a) 热压固化前的整体形貌
(b) 热压固化前的胎网层
(c) (a)图中的放大区域

(d) (c)图中标志区域的EDS图谱
(e) 热压固化后的整体形貌
(f) 热压固化后的胎网层
图2 石墨树脂混合浸渍效果
Fig.2 The effect of graphite-resin impregnation

图3 碳化后得到的C/C多孔体结构
Fig.3 Microstructure of C/C porous preform
(a) 整体结构 (b) 纤维束内部 (c) 胎网层
石墨树脂混合浸渍所得C/C多孔体的XRD图谱如

图4 含有石墨的C/C多孔体和不含石墨的多孔体的XRD对比
Fig.4 The XRD patterns of C/C with and without graphite

图5 C/SiC复合材料的XRD图谱
Fig.5 The XRD spectrum of C/SiC composite

图6 C/SiC复合材料显微结构
Fig.6 BSE micrograph of C/SiC composites

图7 C/SiC 复合材料弯曲应力-应变曲线
Fig.7 Flexural stress-strain curve of C/SiC composite

图8 C/SiC复合材料的断口形貌
Fig.8 Fracture morphologies of C/SiC composites
(a) 整体形貌 (b) 纤维脱粘拔出 (c) 拔出凹坑
(1)石墨树脂料浆混合浸渍时,树脂填充纤维束内小孔隙,石墨粉进入胎网层等大孔隙。石墨粉可以提高C/C多孔体的密度,使C/C复合材料快速致密化,从而缩短了制备周期,经一个PIP周期后即可得到结构合适的C/C多孔体。
(2)制备的C/SiC复合材料包含C、SiC和Si三相,石墨粉的存在可提供足够多的碳基体,保护了亚结构单元内部不被熔融Si渗入,束内碳纤维未受损伤,增强作用得以保留。
(3)C/SiC复合材料平均弯曲断裂强度为118 MPa,最大断裂应变为1.0%。材料整个断裂过程可分为三个阶段,呈现出类金属的伪塑性断裂特征。纤维的脱粘拔出、基体的台阶状断裂、裂纹的偏转,以及石墨粉/树脂碳与纤维的机械啮合等增强增韧机理是材料呈现出伪塑性断裂特征的主要原因。
参考文献
KRENKEL W, HELDENREICH B, RENZ R. C/C-SiC composites for advanced friction systems [J]. Advanced Engineering Materials, 2002, 4(7): 427-436. [百度学术]
OHNABEA H, MASAKIA S, ONOZUKAA M, et al. Potential application of ceramic matrix composites to aero-engine components [J]. Composites: Part A, 1999, 30: 489-496. [百度学术]
SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications [J]. Acta Astronautica, 2004, 55(3-9): 409-420. [百度学术]
NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview [J]. Composites Science and Technology, 2004, 64(2): 155-170. [百度学术]
KRENKEL W, HENKE T. Design of high performance CMC brake disks [J]. Key Engineering Materials, 1999, 164-165: 421-424. [百度学术]
李专, 肖鹏, 熊翔, 等. 炭纤维增强C/SiC双基体复合材料的制备及性能[J]. 新型炭材料, 2010, 25(3): 225-231. [百度学术]
LI Z,XIAO P,XIONG X, et al. Manufacture and properties of carbon fibre-reinforced C/SiC dual matrix composites [J].New Carbon Materials,2010,25(3):25-231. [百度学术]
张永辉, 肖志超, 王继平, 等. C/C多孔体对C/C-SiC复合材料微观结构和弯曲性能的影响[J]. 硅酸盐学报, 2008, 36(8): 1069-1073. [百度学术]
ZHANG Y H, XIAO Z C, WANG J P, et al. Effect of C/C porous preform on the microstructure and flexural strength of C/C-SiC composites [J]. Journal of the Chinese Ceramic Society, 2008, 36(8): 1069-1073. [百度学术]
王玲玲, 马文闵, 嵇阿琳, 等. C/C多孔体对C/C-SiC复合材料制备及性能的影响[J]. 材料工程, 2014(7): 34-38. [百度学术]
WANG L L, MA W M, JI A L, et al. Effect of C/C porous preform on the preparation and properties of C/C-SiC composites [J]. Journal of Materials Engineering, 2014(7): 34-38. [百度学术]
WIELAGE B.A cost effective route for the densification of carbon-carbon composites [J].Journal of Materials Processing Technology, 2003, 132(1-3): 313-322. [百度学术]
ODESHI A G,MUCHA H, WIELAGE B. Manufacture and characterization of a low cost carbon fibre reinforced C/SiC dual matrix composite [J]. Carbon, 2006, 44(10): 1994-2001. [百度学术]
董本兴, 徐永东, 蔡艳芝, 等. 石墨粉对针刺毡C/SiC刹车材料摩擦磨损性能的影响[J]. 航空材料学报, 2009, 29(5): 51-55. [百度学术]
DONG B X, XU Y D, CAI Y Z, et al. Influence of graphite on tribological properties of C/SiC braking material from needled felt [J].Journal of Aeronautical Materials,2009,29(5):51-55. [百度学术]
CAI Y Z, XU Y D, LI B, et al. Low-cost preparation and frictional behaviour of a three-dimensional needled carbon/silicon carbide composite[J]. Journal of the European Ceramic Society, 2009, 29(3): 497-503. [百度学术]
姜娟, 徐永东, 蔡艳芝, 等. 三维针刺C/SiC复合材料显微结构演变分析[J]. 复合材料学报, 2009, 26(5): 105-111. [百度学术]
JIANG J, XU Y D, CAI Y Z, et al. Microstructure evolution of 3D needled C/SiC composites [J]. Acta Materiae Compositae Sinica, 2009, 26(5): 105-111. [百度学术]
ASTM C1351-13[S].Standard test method for flexural properties of continuous fiber-reinforced advanced ceramic composite, 2013. [百度学术]
CAI Y Z, XU Y D, LI B, et al. Microstructures and mechanical properties of a low-cost three-dimensional needled carbon/silicon carbide composite[J]. Materials Science and Engineering A 2008, 497: 278-282. [百度学术]
ZHANG X, LIU H Y, MAI Y W. Effects of fiber debonding and sliding on the fracture behaviour of fiber-reinforced composites [J]. Composites: Part A, 2004, 35: 1313-1323. [百度学术]
XU G, BOWER A F, ORTIZ M. The influence of crack trapping on the toughness of fiber reinforced composites [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(10): 1815-1833. [百度学术]