Application of Domestic Ultra-thin Aluminum Honeycomb Material on Solar Array Substrate
Author:
Affiliation:

1.Beijing Institute of Spacecraft System Engineering,Beijing 100094;2.Defense Industry Program Evaluation Center of SASTIND,Beijing 100094;3.China Aerospace Components Engineering Center,Beijing 100094

Clc Number:

TB33

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the requirements controllable of domestic high-performance and low-density ultra-thin aluminum honeycomb on solar array substrate, analysis and tests were conducted to verify the technical feasibility of the application of domestic ultra-thin aluminum honeycomb for the solar array substrate. First, quasi-static analysis was conducted with a finite element model. As a result, the maximum shear stress of honeycomb was 0.345 MPa, which was less than the shear strength 0.36 MPa and satisfied the strength margin requirements.Secondly, aiming at the problems of fluctuation of shear modulus in the development of ultra-thin honeycomb, the influence of honeycomb shear modulus fluctuation on the mechanical properties of the substrate was analyzed. The results show that the stress and strain distribution of the substrate is not sensitive to the change of shear modulus. After the honeycomb shear modulus is reduced by 50%, the maximum strain of carbon fiber decreases by 3%, the maximum shear stress of the honeycomb decreases by 9%, and the maximum displacement of the substrate increases by 7%, which can provide data support for cellular assessment. Finally, through the force and thermal tests of the base plate scaling piece and full size base plate, the solar array substrate is not damaged after the tests. The analysis and test results show that the performance of the domestic ultra-thin aluminum honeycomb meets the requirements and can be used for solar array substrate requirements.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 19,2022
  • Revised:March 19,2023
  • Adopted:February 02,2023
  • Online: April 26,2023
  • Published: April 30,2023