激光全息术测量 C/C 复合材料泊松比

王富强^{1,2} 嵇阿琳^{1,2} 王坤杰^{1,2} 杨 杰^{1,2}

(1 西安航天复合材料研究所,西安 710025)(2 高性能碳纤维制造及应用国家地方联合工程研究中心,西安 710089)

文 摘 根据激光全息术的基本原理,利用 CCD 分别记录 C/C 复合材料试样弯曲状态变化前后的全息 图,分析材料弯曲应力状态下表面的干涉条纹图样,通过测量干涉条纹图样中相同相位条纹的渐近线之间的夹 角,求出 C/C 复合材料的泊松比。试验证明该方法简单易行,数据可靠,是一种有效测量 C/C 材料泊松比的方 法,激光全息术测得轴棒法 C/C 材料、针刺 C/C 材料、毡基 C/C 材料泊松比分别为 0.196、0.183、0.040。 关键词 激光全息术,C/C 复合材料,泊松比

Measurement of Poisson's Ratio of C/C Composite by Laser Holographic Interferometry

Wang Fuqiang^{1,2} Ji Alin^{1,2} Wang Kunjie^{1,2} Yang Jie^{1,2}

(1 Xi'an Aerospace Composites Institute, Xi'an 710025)

(2 National and Local Union Engineering Research Center of High Performance

Carbon Fiber Manufacture and Application, Xi'an 710089)

Abstract In this paper, the principle and the method for the measurement of Poisson ratio of C/C composite material by laser holographic interterometry are described. The result shows that this method is especially suitable for the measurement of C/C composite Poisson's ratio. The mean value of Poisson's ratio of braided C/C, needled punching C/C, felted C/C were 0. 196, 0. 183, 0.040.

Key words Laser holography, C/C composite, Poisson's ratio

0 引言

对各向同性的线弹性材料而言,通过拉伸模量、 剪切模量、体积模量和泊松比^[1]来描述材料的弹性 行为,这四个常数是互相依赖的关系,只要知道其中 三个,就可推算得出另外一个^[2]。对于各向异性的 材料,由于在各方向上增强体的种类与数量不同,已 不适用各向同性材料泊松比关系式,只能通过直接或 其他间接测量得到材料泊松比。

C/C 复合材料目前主要用于火箭发动机的热结构部件,但目前其泊松比还没有统一的测试方法,没有精确的泊松比值。C/C 复合材料是典型的各向异性材料,其横向与纵向泊松比有很大的不同。

用于 C/C 材料泊松比测量的方法有拉伸法、压

缩法等。拉伸法又分为机械法、声学法、光学法等,复杂的模型不易操作,简单的模型容易处理,但计算易引入较大误差。因此,依据 C/C 材料纯弯曲力作用下,材料表面横向与纵向离面位移与泊松比关系,通过激光全息术求得 C/C 复合材料泊松比,对指导 C/C 复合材料工程应用具有重大意义。

1 基本原理

根据弹性力学中板或梁的纯弯曲理论,一块矩形平 板试样纯弯加载条件下,试样表面具有相同离面位移的 点(xy)构成两组双曲线^[3-5](图1),示为(1)式:

收稿日期:2012-03-15;修回日期:2012-05-25

作者简介:王富强,1981年出生,硕士,研究方向 C/C 复合材料制备。E-mail:shiyanshi050428@163.com

线间的夹角为2α,由几何关系可得

$$\nu = \frac{x^2}{\gamma^2} = (\tan \alpha)^2$$
 (2)

因此,可采用数字全息术得到试样纯弯曲变形前 后离面位移分布图(图2),从而可进一步求出其渐近 线夹角2α,然后根据(2)式计算待测材料的泊松比。

图1 平板纯弯曲变形图

Fig. 1 Pure bending of plane strain sketch

图 2 试样弯曲前后离面位移分布图样 Fig. 2 Phase difference fringe pattern of the sample before and after pure bending

2 试验

2.1 材料

选择了三种典型的 C/C 复合材料:轴棒法多维 编织 C/C 复合材料、针刺 C/C 复合材料、毡基 C/C 复合材料,试样尺寸为 100 mm×15 mm×5 mm,长度 100 mm 分别平行碳棒/碳布方向、垂直于碳毡方向。

轴棒法编织 C/C 复合材料采用拉挤成型的细碳 纤维刚性棒构成轴向增强网络,采用碳纤维纱编织成 预制体,经沥青浸渍/炭化致密制成高密度 4D C/C 复合材料。

针刺 C/C 复合材料采用碳纤维布、碳网胎机械 自动针刺成型预制体,经 CVD 碳致密成准 3D C/C 复合材料。

毡基 C/C 复合材料采用预氧毡针刺成预制体, 经化学气相沉积、树脂浸渍/炭化致密成准 3D C/C 复合材料。

2.2 实验环境

实验环境:温度(23±2)℃,相对湿度40%。 测试过程:

(1)试样表面喷涂荧光剂材料;

(2)将试样装卡在夹具上,用螺旋测位计加载;

(3) 激光成像系统工作, 采集图样, 图像处理。

2.3 试验系统与原理

C/C 复合材料泊松比实验测量系统主要由数字 全息图记录光路、试样加载夹具、CCD、图像数据采集 与处理系统组成。系统光路结构如图 3 所示, He-Ne 激光器发出的细激光束(λ=632.8 nm)经平面镜 M1 反射由分束镜 BS1 分为两束,其中一束光经扩束镜 MO2 和准直透镜 L2 扩束准直后,经平面镜 M3 反射 在待测试样表面,经反射后作为物光投射到 CCD 的 光敏面上;另一束光依次经平面镜 M2 反射,小孔扩 束镜 MO1 和准直透镜 L1 扩束,半透半反镜 BS2 反射 后,投射在 CCD 的光敏面上。减光板 PH1 和 PH2 用 来调节总光强及物光与参考光的光强比。通过改变 分束镜 BS2 的方位角可调节到达 CCD 光敏面上的物 参夹角。实验所用 CCD 为敏通 1802CB 黑白型,其靶 面的实际尺寸为 6.40 mm×4.80 mm, 像素数为 795 (H)×596(V),每个像素的尺寸为8.1 μm×8.1 μm。 采用全息记录光路的特点是光路结构简单,易于实 现,光学元件少且无需成像透镜,因而可避免因其表 面的灰尘或污染引起的衍射图样以及透镜带来的像 差等非线性影响:数值重建算法简单,使得再现处理 周期缩短,横向分辨率高且能够充分利用 CCD 的空 间带宽[6-7]。

图 3 数字全息术测量 C/C 材料泊松比光路图

Fig. 3 Beam transforming hologram for measurement of Poisson's ratio by laser holographic interterometry

为了获得对称性好、条纹清晰的双曲线簇,需要 对试样对称加载,使其满足纯弯曲变形条件,因此采 用四点弯曲方式加载,如图4所示。为保证试样的纯 弯曲形变,四个支点沿试样中心线对称分布。测量 时,先将试样置于加载夹具的两对称加载支点之间, 确保试样加载对称满足纯弯曲变形条件,再对试样施 加尽可能小的载荷,使其在夹具中不致移动且加载点 能够完全贴合试样,将该状态下的试样作为物场初始 状态。然后对试样逐渐均匀加载,待试样稳定后记录 下加载时的全息图。

Fig. 4 Loading of sample sketch

3 结果与分析

3.1 试验结果

当 C/C 材料试样受四点弯曲应力后,材料表面 横向与纵向发生微变形,通过 CCD 光学成像系统,得 到试样表面的数字全息成像图(图5),在弯曲应力发 生微小改变后,图像双曲线的条纹间距、数量发生变 化,但双曲线的渐近线不变,即试样的泊松比不变,试 验中对于同一试样进行多次加载,加载应力逐渐增 加,以得多幅较为清晰与完整双曲线全息图为准。

(c) 毡基 C/C图 5 C/C 复合材料试样数字全息图Fig. 5 Hologram for measurement of Poisson's ratio

3.2 泊松比计算

泊松比计算方法如图 6 所示,在数字全息图像 - 90 - 中,通过测量软件选择双曲线渐近线上的三点,利用 三角形余弦定理求得双曲线渐近线的夹角 2α,再通 过泊松比与双曲线夹角关系式(3)计算 C/C 材料泊 松比,见表1。

图 6 数字全息术测量泊松比结果处理图

Fig. 6 Treating hologram for measurement of Poisson's ratio

表1 数字全息术测得 C/C 材料泊松比

Tab. 1 Results of measuring C/C Poisson's ratio

试样	双曲线渐近 线夹角 2α/(°)	$\bar{\nu}$	变异系数 /%
轴棒法 C/C	47.79	0.196	4.3
针刺 C/C	46.36	0.183	1.9
毡基 C/C	11.34	0.040	2.9

$$\nu = (\tan \alpha)^2 = \left[\tan \left(\frac{\arccos \frac{a^2 + b^2 - c^2}{2ab}}{2} \right) \right]^2 \quad (3)$$

本文对同一试样的多张全息图测量计算泊松比, 取算术平均值(4式),保留三位有效数值。

$$\bar{\nu} = \frac{1}{n} \sum_{i=1}^{n} \nu_i \tag{4}$$

式中, $\bar{\nu}$ 为泊松比平均值; ν_i 为单次测量泊松比。

通过多次测量及对比测试表明,激光全息术测试 数据离散小,结果重复性好,并且解决了其他方法测 量泊松比较小的 C/C 材料难度大的问题。与机械法 测得泊松比相比,激光全息术测量精度高、离散小,测 得轴棒法 C/C、针刺 C/C、毡基 C/C 材料泊松比分别 为 0. 196、0. 183、0. 040。

3.3 试验影响因素分析

大量测试表明影响实验结果精度的因素及解决 方法主要有以下三方面。

3.3.1 加载

实验中,为了尽量避免产生不对称的全息条纹, 必须对试样实施对称加载,通过夹具对待测试样进行 加载时,可能会出现加载不对称的情况,其原因有多 个方面,如夹具本身不严格对称,试样形状不规则、平 整度和均匀度不好,试样放置不对称等,这些都会引 入加载的误差。

3.3.2 试样

试样主要要求:(1)代表性,试样的尺寸要满足 测试设备成像系统要求,即包含有效的 C/C 材料结 构单元,试样中增强碳纤维必须平行(或垂直)于试 样的表面;(2)对称性,试样的形状规则,内部增强体 碳纤维对称均匀分布,试样加载过程缓慢均匀,尽可 能满足纯弯曲条件;(3)表面处理,试样表面的平整 度满足要求,试样表面喷涂荧光剂,荧光剂材料要均 匀平整。

3.3.3 图像采集与再现

获取对称的全息条纹过程中,试样标距段图像采 集和再现过程中有可能产生图像畸变,畸变的图像导 致计算的误差,直接影响结果的准确性。因此,双曲 线簇图出现在板材表面中央照明区,并且满足纯弯曲 的条件,选择清晰完整的双曲线图计算泊松比。试验 设备中的光学成像系统需要用标准样进行多次校正。 同时,采集的数值再现为图像时,必须考虑再现图像 水平和竖直方向上的采样间隔与图像的匹配,必要时 先对采集到图样进行修正,再计算。数据采集、图像 再现过程控制越精确,测量精度就越高。

4 结论

(1)激光全息术测量 C/C 复合材料泊松比,试验 简便易行,数据可靠,适合于测量 C/C 复合材料泊松 比。 (2)激光全息术与常规的方法测量 C/C 材料泊 松相比,测量具有更高的精度,数据离散小,结果重复 性好,是一种有效测量 C/C 材料泊松比的方法。

(3) 激光全息术测量得到轴棒法编织 C/C 材料、 针刺 C/C 材料、毡基 C/C 材料泊松比分别为 0.196、 0.183、0.040。

参考文献

[1] 单桂芳,杨伟,冯建民,等.材料泊松比测试方法研究 进展[J].材料导报,2006,20(3):15

[2] 贾德昌, 宋桂明, 等. 无机非金属材料性能[M]. 北京:科学出版社, 2008:3

[3] Denis Cuche. Determination of the Poisson's ratio by the holographic moiré technique[J]. SPIE, 1988, 1026:165

[4] Denis Cuche. Determination of the Poisson's ratio of filled epoxy and composite materials[J]. SPIE,1990,1212:315

[5] 谢东, 庹有康. 应用激光全息干涉技术测量复合材料 泊松比的研究[J]. 激光杂志, 2001, 22(2):48

[6] Christoph Wagner, Sönke Seebacher, Wolfgang Osten. Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology [J]. Appl. Opt., 1999, 38 (22): 4812

[7] 徐莹,赵建林,向强,等.无透镜傅里叶变换全息图数 值再现中的图像处理[J].光学学报,2004,24(11):1503

(编辑 任涛)

(上接第75页)

[5] http://search.nasa.gov/Self-Reacting Fricting Stir nolding for Aluminium Alloy Circumferontial neld Applicatings

......

[6] P L Threadgill, M M Z Ahmed, J P Martin, et. al. The use of bobbin tools for friction stir welding of aluminium alloys $[C] //6^{th}$ International Conference on Processing and Manufacturing of Advanced Materials, Berlin, Germany, 2009

[7] Marie F, Allehaux D, Esmiller B. Development of the Bobbin Tool technique on various aluminium alloys[C] // TWI's Fifth International Symposium on Friction Stir Welding, Metz, France, 14-16 September, 2004

 $[\,8\,]$ Judy Schneider, Arthur Nunes, Michael Brendel. The influence of friction stir weld tool form and welding parameters on weld structure and properties: Nugget bulge in self-reacting friction stir welds $[\,C\,]\,/\!/\,8^{\,\rm th}$ international symposium on friction stir welding, Germany, 2011

[9] 赵衍华,林三宝,贺紫秋,等.2014 铝合金搅拌摩擦焊接过程数值模拟[J]. 机械工程学报,2006,42(7):92-95

(编辑 吴坚)