低密度烧蚀材料在神舟飞船上的应用

王春明 梁 馨 孙宝岗 谭朝元 孙红卫

(航天材料及工艺研究所,北京 100076)

文 摘 介绍了神舟号系列载人飞船返回舱防热材料的配方设计、成型工艺及性能情况,并与国外相关防热 材料进行了对比,包括防热材料的类型、工艺及性能特点等,对返回舱用防热材料的发展进行了总结和展望。 关键词 载人飞船,返回舱,烧蚀材料

Application of Low Density Ablative Material on Shenzhou Spacecraft

Wang Chunming Liang Xin Sun Baogang Tan Zhaoyuan Sun Hongwei (Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

Abstract The compositions, processing technologies and performances of the command module of Shenzhou manned spacecraft are introduced in this article and compared with the related ablation materials in other countries. Furthermore, the development of ablation materials of command module is summarized and prospected.

Key words Manned spacecraft, Command module, Ablation material

0 引言

载人飞船外表面的防热材料是保证宇航员安全 返回地面的关键材料,其作用是抵御再入气动加热, 同时还要承受轨道段的高低温交变。当载人飞船返 回舱以极高的速度穿越大气层时,其外表面材料与大 气层摩擦产生大量热能,而这些热能又以边界层对流 和激波辐射形式加热返回舱。由于载人飞船再入时 一般采用升力再入,热防护体处于最大热流密度的时 间很短,而大多数时间的热流密度都很低。再入时的 热环境特点是焓值高、热流密度低、驻点压力低和再 入时间长^[1]。

一般来讲,对载人飞船返回舱热防护材料的要求 是^[2]:(1)低的密度、热导率;(2)烧蚀时有高的热阻 塞效应;(3)碳层有一定强度;(4)工艺性好,易于制 作复杂外形结构;(5)热匹配性能良好。

根据国外载人飞船的发展历程^[3-7],特别是对载 人环境特点的认识,我国神舟系列载人飞船返回舱设 计成全烧蚀材料的防热方案。烧蚀材料具有如下特 点。

(1)可靠性高

一般的烧蚀材料防热效率随热流密度和气流焓 值的提高而增大,这个特性可以消除设计输入条件 (如外热流和局部干扰热流)误差而引起的隐患,提 高系统的可靠性。辐射防热结构则相反,局部热环境 的偶然增大都可使整个系统受到破坏而导致结构解 体。因此在热流条件不可能准确预测或有可能出现 波动时,不应采用辐射防热结构。

(2)结构较简单

烧蚀防热结构处理局部防热较为简单,往往只要 在该处增厚防热层或改变烧蚀材料即可,整个防热层 与金属内壳的连接可采用胶接。辐射防热则远比烧 蚀防热复杂,局部防热往往要采用其他的防热措施, 且内外两层蒙皮要采用耐高温、有应力释放条件的连 接方法。

(3)技术成熟

烧蚀防热结构在国外所有的载人飞船上都已成 功应用,并且国内已有返回式卫星的成熟技术,所以 采用这种结构有较多可借鉴的国内、外的经验。

(4)结构质量轻

国内、外设计的经验表明,当采用较低密度(\leq 0.8 g/cm³)的烧蚀防热层后,结构质量可以比辐射防 热结构更轻。神舟系列载人飞船就是采用了一种轻 质(ρ =0.54–0.71 g/cm³)的烧蚀防热材料。

本文对我国神舟系列载人飞船返回舱所采用的 低密度烧蚀材料的配方设计、工艺及性能进行简要介 绍,并与国外返回舱相关防热材料进行对比,同时对 未来返回舱用防热材料的发展进行展望。

1 低密度烧蚀材料的配方设计

神舟系列载人飞船防热所用的低密度烧蚀材料为 硅橡胶基材料,这种材料由基体和填料两大组分组成见

收稿日期:2010-12-15

作者简介: 王春明,1976年出生,高级工程师,主要从事功能复合材料研究与应用工作。E-mail:shoody@139.com

图 1,它们的组分和剂量均进行了综合优化设计。填料 包括增强纤维、酚醛空心微球及玻璃空心微球,其主要 目的是降低材料密度并提高隔热性能,同时保证烧蚀材 料表面的抗气流剪切能力。制成的低密度烧蚀材料预 混料要填充到玻璃钢蜂窝里,后者主要用来提高烧蚀材 料自身的强度和抗剪能力。

图 1 低密度烧蚀材料组成结构示意图 Fig. 1 Sketch graph of composions and structure of low density material

低密度烧蚀材料重要的特点之一就是材料密度 的可设计性^[8]。通过调整材料各组份的配比,可以 使材料满足预期的密度。根据对低密度材料的配方 与性能关系的研究,开发了一种低密度烧蚀材料(含 蜂窝增强)配方设计软件-LDCAD For Windows。通 过该软件,可以根据初始材料的性能对所需密度材料 进行设计,获得最优的材料配方、提高材料的综合性 能,并可在一定范围内对材料的密度进行设计^[9]。 图 2 为通过该软件设计的材料密度和实测密度的对 比,可知理论密度和实际密度的误差很小。

and real density of ablation material The number of 88,90,96 are the design codes of low density materials; number of H88,H90,H96 are the design codes of low density materials strengthened by honeycomb.

根据飞船返回舱的再入环境不同,最终设计和研制了两种密度的防热材料,侧壁的迎风面和大底采用密度为0.71 g/cm³的 H96 蜂窝增强低密度材料,侧壁的背风面则采用密度为0.54 g/cm³的 H88 蜂窝增强低密度材料。

2 低密度烧蚀材料的烧蚀机理

飞船返回时,空气受到强烈的压缩和剧烈的摩擦 作用,大部分动能转化为热能;材料表面在热流作用 - 6 -- 下,通过材料自身的分解、熔化、蒸发、升华等物理化 学变化,在材料表面质量消耗的同时带走大量的热, 阻止热流传入返回舱内部。材料的烧蚀机理可以分 为以下几个方面来描述^[10-11]。

(1)材料的热解。材料受热,达到一定的温度时, 即开始热解,含硅材料在烧蚀过程中要产生两次热解: 一次热解发生在 500 K 左右,主要产物为挥发性硅氧 烷;第二次热解发生在1000 K 左右,主要是挥发性硅 氧烷发生热解。热解产物为:H,、CO,、H,O、SiO,等,两 次热解均为吸热反应。材料热解时含硅材料和酚醛小 球分解时放出大量气体吸收一部分热量,当热解气体 经过碳层时,还要带走一部分热量,同时分解气体注入 附面层产生热阻塞效应,这一作用则可降低对流加热 的影响,该区域在计算中称之为热解区。该类烧蚀材 料不同于一般以环氧、酚醛为基的低温炭化类烧蚀材 料,该类烧蚀防热材料在受热时,不仅发生有机物分 解,降低密度,而且当表面温度升高至 SiO,熔化时,形 成密实的碳层,阻碍了气体向外逸出,气体留在碳层内 部引起膨胀,形成密度很低的区域,再向材料内部方向 的是由增强石英纤维和未熔化的玻璃微球与酚醛微球 组成的热导率很低的隔热层,以上因素共同作用起到 外部材料受热分解带走热量、内部材料隔热的作用。

(2)材料的炭化。材料热解后生成碳,碳层密度 很高,具有较高的辐射系数,因此除起着隔热作用外, 还能向外辐射大量的热量,向外辐射的热流 q:

 $q_{\varepsilon} = \varepsilon \sigma T^4 \tag{1}$

式中, ε 为辐射系数; σ 为斯忒藩-波尔兹曼常数; q_{ε} 为辐射热流。因此,碳层表面温度越高,向外辐射的热量就越大。

(3)表面碳层的燃烧。当达到一定温度后,部分 碳层会与氧气发生燃烧反应,该过程为放热反应。

(4)表面膨胀。由于在烧蚀过程中表面密实外 壳的形成,它阻止热解气体的逸出,因而膨胀形成密 度很低的区域,结果碳层表面向外移动,移动的距离 远大于烧蚀的厚度,使得材料整个厚度增加。

(5)向内部的热传导。材料以传导的方式向内 部传热。

烧蚀防热材料通过外部材料的受热分解带走热 量、材料炭化形成密实外壳向外辐射热量以及碳层的 燃烧起到消耗热量的作用,同时通过表面碳层形成阻 碍内部热解气体逸出,形成密度很低的区域以及内部 未烧蚀的隔热区域,起到阻止热量进入返回舱的作 用。以上因素共同决定了烧蚀防热材料具有良好的 热防护功能。

3 低密度烧蚀材料的大面积灌注成型工艺

国外低密度烧蚀材料成型通常采用单孔灌注和 大面积灌注两种工艺。其中美国"双子星座"飞船采 用振动大面积灌注工艺;"阿波罗"飞船采用的是单 http://www.yhclgy.com 宇航材料工艺 2011年 第2期 孔灌注工艺,其工艺成本占 50% 以上,而且材料质量 不易控制^[12]。

鉴于国外经验、我国实际情况和探索试验结果, 我国神舟飞船的研制采用了真空大面积灌注工艺。 该工艺具有效率高、可靠性好等独特的优点,克服了 振动大面积灌注工艺所导致的增强纤维灌注不均匀、 成本较高的问题,比单孔灌注工艺的灌注效率及可靠 性更高。真空大面积灌注工艺显著提高了蜂窝增强 低密度烧蚀材料本身的质量和防热结构的完整性,其 中灌注成功率达到 99.95% 以上,工效是美国"阿波 罗"飞船所采用的单孔灌注工艺的 5 倍。

真空大面积灌注工艺成功地解决了返回舱上低 密度烧蚀材料往 11 万个蜂窝格子里灌注的工艺技 术,把蜂窝增强和免套装工艺有机地结合起来,显著 提高了防热材料本身的质量和防热结构的完整性。 图 3 为神舟飞船大底及侧壁的实物照片。

(b) 大底 图 3 神舟飞船大底及侧壁实物照片

Fig. 3 Pictures of aft heat shield and sidewall of Shenzhou spacecraft

4 低密度烧蚀材料的修补技术

低密度烧蚀防热材料由于成型工序多、工艺复杂,所以产品在制造、装配和运输过程中容易引起缺陷/损伤。特别是因为许多防热零部件直接在非金属 及金属结构件上成型而成为防热结构件,如果缺陷/ 损伤得不到有效的修补,产品报废则造成重大经济损 失,延误产品研制进度。

根据飞船防热材料的特点,设计了两种低密度烧 蚀材料修补材料:RP14-88 和 RP14-96,可以室温或 在 60℃ 固化,分别用于 H88 和 H96 的修补^[13]。表 1 为其主要性能。

表1 修补材料主要性能	

	r	
材料	密度/g·cm ⁻³	扯离强度/MPa
RP14-88	0.50 ± 0.04	≥0.6
RP14-96	0.66 ± 0.04	≥0.6

5 低密度烧蚀材料的主要性能及与国外返回舱防热 材料的比较

5.1 低密度烧蚀材料的性能

神舟系列载人飞船上采用的两种蜂窝增强低密 度烧蚀材料的性能见表2。

Tab.2 Performances of low density ablation materials strengthened by honeycomb

++**	密度	热真空质量损失	可凝挥发份	烧蚀热效率	热导率(RT-50℃)	比热容(RT)
竹件	$/g \cdot cm^{-3}$	(TML)/%	(CVCM)/%	$/kJ \cdot g^{-1}$	$/W \cdot (m \cdot K)^{-1}$	$/\mathbf{J} \cdot (\mathbf{g} \cdot \mathbf{K})^{-1}$
H96	0.71 ± 0.04	≤1	≤0.1	≥11	≤0.15	≥1.2
H88	0.54 ± 0.04	≤1	≤0.1	≥7.3	≤0.12	≥1.4

表 2 中, TML 及 CVCM 是材料能否在空间环境 下使用的关键指标。如果热真空质量损失和可凝挥 发物很大,则对空间飞行器的电气和其他性能产生不 良影响。通过原材料的提纯和优化材料配方及固化 工艺,使神舟系列飞船返回舱用低密度烧蚀材料的 TML 降到了 1% (100°C)以下, CVCM 降低到 0.1% (25°C凝结)以下^[14]。对用于低密度烧蚀材料这种低 热流长时间使用的烧蚀材料,烧蚀热效率 E_{eff} 是综合 比较材料防隔热性能的常用指标^[15]:

$$E_{\rm eff} = \frac{q \cdot \Delta t}{W} \tag{2}$$

式中,q 为冷壁热流密度;W 为单位面积内烧蚀材料的质量, Δt 为 试件背面温升 100℃所需时间。 http://www.yhclgy.com 宇航材料工艺 2011年 第2期 从式(2)可以看出,在同样热流密度和试件的 面密度下,背面温升达一定预定值时所需加热时间的 长短直接反映了烧蚀热效率的大小。

由于烧蚀实验所采用的试件面密度及背面温升 值的约定都带有人为性,同样的材料在同样的加热状 态下,选择不同的试件面密度和背面温升约定值,会 得到不同的烧蚀热效率,因此烧蚀热效率只是一个相 对意义的数值。因此,还可采用隔热性能参数α来表 征材料的隔热性能:

$$\alpha = \frac{\rho \lambda}{c_p} \tag{3}$$

— 7 —

式中, ρ 为密度, λ 为热导率, c_p 为比热容。

对于由不同密度、含有微孔的防隔热材料,隔热

性能参数越低,则表明材料的隔热性能越好。

5.2 神舟系列载人飞船与国外飞船性能的对比

前苏联和美国的第一代飞船都采取了比较保守 的防热设计方案,材料厚度冗余度比较大,而且基本 上借鉴了导弹等弹道式再入飞行器的防热材料和再 入方式。随着飞行试验次数的增加和对烧蚀机理的 认识,后来飞船的再入均采用了有升力的再入轨道。 前苏联采用了多层防隔热材料,美国则发展了蜂窝增 强的低密度烧蚀材料。国内外典型飞船返回舱主要 防热材料对比见表 3^[16-19]。

从表3可知,神舟系列飞船所采用的低密度烧蚀 材料密度是前苏联联盟号飞船所采用的防热材料的 1/2 以下,烧蚀性能接近于美国"阿波罗"号飞船所采 用的 Avcoat5026-39 材料;从成型工艺上看,神舟系 列飞船采用的真空大面积灌注工艺,其成型工艺效率 约是 Avcoat 5026-39 材料的5 倍。

	表 3	国内外典型飞船返回舱主要防热材料对比
Fab. 3	Compa	risons of ablation materials of spacecrafts in the world

	-			-			
侧壁大面积	成型	材料密度	α	大底大面积	成型	材料密度	α
防热材料	工艺	$/g \cdot cm^{-3}$	$/10^{-4} \mathrm{g}^2 \cdot \mathrm{cm}^{-4} \cdot \mathrm{s}^{-1}$	防热材料	工艺	$/g \cdot cm^{-3}$	$/10^{-4} \mathrm{g}^2 \cdot \mathrm{cm}^{-4} \cdot \mathrm{s}^{-1}$
人居 封約陸劫				DC-325 硅橡胶基低	脉冲	0.95	0.6
並周的科切然	-	-	-	密度材料(非空间级)	振动	0.85	9.0
Avcoat 5026-39	潮注检			Avcoat 5026-39	 滅 注 检		
酚醛环氧低密	准 任他 千十端分	0.55	3.4	酚醛环氧低密度	1世11년 千丁満分	0.55	3.4
度烧蚀材料	十工催往			烧蚀材料	十工催往		
玻璃武石槍/融磁	毛細武樹			┃ 玻璃或石棉/	毛細朮柑		
坂柄以口仰/ 助臣	丁丽以侠	1.4-1.6	约 47	酚醛玻璃钢+	丁丽以侠	1.4-1.6	约 47
圾埚钢+衆四氟乙烯				■ 聚四氟乙烯	违成型		
H88 及 H96 低	真空大面	H88: 0.54	H88: 3.2	H96 低密度	真空大面	0.71	6.0
密度烧蚀材料	积灌注	H96:0.71	H96: 6.2	烧蚀材料	积灌注	0.71	6.2
	 侧壁大面积 防热材料 金属材料防热 金属材料防热 Avcoat 5026-39 酚醛环氧低密 度烧蚀材料 玻璃或石棉/酚醛 玻璃钢+聚四氟乙烯 H88 及 H96 低 密度烧蚀材料 	側壁大面积 成型 防热材料 工艺 金属材料防热 - Avcoat 5026-39 灌注枪 酚醛环氧低密 手工灌注 度烧蚀材料 手工灌注 玻璃或石棉/酚醛 手糊或模 玻璃钢+聚四氟乙烯 压成型 H88 及 H96 低 真空大面 密度烧蚀材料 积灌注	側壁大面积 成型 材料密度 防热材料 工艺 /g·cm ⁻³ 金属材料防热 - - Avcoat 5026-39 灌注枪 0.55 膨醛环氧低密 手工灌注 0.55 皮烧蚀材料 - - 玻璃或石棉/酚醛 手糊或模 1.4-1.6 玻璃钢+聚四氟乙烯 互空大面 H88:0.54 密度烧蚀材料 积灌注 H96:0.71	侧壁大面积 成型 材料密度 α 防热材料 工艺 /g·cm ⁻³ /10 ⁻⁴ g ² ·cm ⁻⁴ ·s ⁻¹ 金属材料防热 - - - 金属材料防热 - - - Avcoat 5026-39 灌注枪 0.55 3.4 酸嘧环氧低密 手工灌注 0.55 3.4 玻璃或石棉/酚醛 手糊或模 1.4-1.6 约47 玻璃钢+聚四氟乙烯 压成型 1.4-1.6 约47 H88 及 H96 低 真空大面 H88: 0.54 H88: 3.2 密度烧蚀材料 积灌注 H96: 0.71 H96: 6.2	侧壁大面积 成型 材料密度 α 大底大面积 防热材料 工艺 /g·cm ⁻³ /10 ⁻⁴ g ² ·cm ⁻⁴ ·s ⁻¹ 防热材料 金属材料防热 - - - - B Avcoat 5026-39 灌注枪 0.55 3.4 DC-325 硅橡胶基低 密度材料(非空间级) Avcoat 5026-39 灌注枪 - - - - - 酚醛环氧低密 手工灌注 0.55 3.4 B B - <t< td=""><td>侧壁大面积 成型 材料密度 α 大底大面积 成型 防热材料 工艺 /g·cm⁻³ /10⁻⁴g²·cm⁻⁴·s⁻¹ 防热材料 工艺 金属材料防热 - - - - - B DC-325 硅橡胶基低 脉冲 金属材料防热 - - - - - - 密度材料(非空间级) 振动 Avcoat 5026-39 灌注枪 - - - - - 密度材料(非空间级) 振动 Avcoat 5026-39 灌注枪 0.55 3.4 一 -</td><td>侧壁大面积 成型 材料密度 α 大底大面积 成型 材料密度 防热材料 工艺 /g·cm⁻³ /10⁻⁴g²·cm⁻⁴·s⁻¹ 防热材料 工艺 /g·cm⁻³ 金属材料防热 - - - - 防热材料 工艺 /g·cm⁻³ 金属材料防热 - - - - - - ·/// ·································</td></t<>	侧壁大面积 成型 材料密度 α 大底大面积 成型 防热材料 工艺 /g·cm ⁻³ /10 ⁻⁴ g ² ·cm ⁻⁴ ·s ⁻¹ 防热材料 工艺 金属材料防热 - - - - - B DC-325 硅橡胶基低 脉冲 金属材料防热 - - - - - - 密度材料(非空间级) 振动 Avcoat 5026-39 灌注枪 - - - - - 密度材料(非空间级) 振动 Avcoat 5026-39 灌注枪 0.55 3.4 一 -	侧壁大面积 成型 材料密度 α 大底大面积 成型 材料密度 防热材料 工艺 /g·cm ⁻³ /10 ⁻⁴ g ² ·cm ⁻⁴ ·s ⁻¹ 防热材料 工艺 /g·cm ⁻³ 金属材料防热 - - - - 防热材料 工艺 /g·cm ⁻³ 金属材料防热 - - - - - - ·/// ·································

6 结语

(1)通过对低密度材料的配方与性能关系的研究,在一定范围内实现了对材料密度的设计,获得了 满足飞船不同部位防热需求的材料配方。

(2) 真空大面积灌注工艺显著提高了蜂窝增强 低密度烧蚀材料本身的质量和防热结构的完整性,灌 注成功率达到 99.95% 以上。

(3)通过研制修补材料,实现了低密度烧蚀材料 的可修补性。

(4)低密度烧蚀材料的热真空质损、可凝挥发份 满足空间环境使用要求,烧蚀/隔热性能优异,满足了 神舟系列飞船的防热需求。

蜂窝增强低密度烧蚀材料不仅可应用在载人飞船 上,还可推广用于其他领域的高焓、低热流密度和长时 间的烧蚀环境,对于减轻质量、提高有效载荷和改善武 器的吸波隐身、抗核及烧蚀隔热性能具有重要意义;此 外,低密度烧蚀材料可设计为变密度烧蚀材料,这种新 型的设计理念不仅可以减轻防热质量,而且可以提高 材料的烧蚀热效率,充分合理地利用了防热质量。

参考文献

[1] 韩鸿硕,等. 国外航天器防热系统的应用研究现状 [J]. 宇航材料工艺,1994(6): 1-4

[2] 吴国庭,陈月根.防热结构设计[M].导弹与航天丛书.航天器进入与返回技术,第五章.北京:宇航出版社,1991

[3] Klaus Jaeger. Space courier-a reentry capsule for sample retrieval and growth capability for crew rescue. IAF-88-204:6

[4] 韩鸿硕,等.飞船系统的发展研究[M]. 1992:2.3.1-2.3.8

[5] Smith E G, et al. Thermal/ablation model of low density cork phenolic for the titan IV stage I engine thermal protection sys-

tem[D]//AIAA Thermophysics Conference, 27th, Nashville, TN, July6-8, 1992.8p, AIAA-92-2905

[6] Milos, Fank S, et al. Galileo probe heat shield ablation experiment[D]. AIAA-96-1823

[7] Klaus Jaeger. Space courier-A reentry capsule for sample retrieval and growth capability or crew rescue. IAF-88-204:6

 $[\,8\,]$ Gu zhaozhan, Fu shenghong. Density design for low-density ablative materials[C]//47 $^{\rm th}$ International Congress, Beijing, 1996

[9] Gu zhaozhan, Ling ying, Sun hongwei. Optimization of thermal structural compatibility for low-density ablative materials [C]//49th, IAF. Australia, 1998

[10] 吴国庭. 神舟飞船防热结构的研制[J]. 航天器工程, 2004, 13(3):9

[11] 邢连群. 低密度硅基材料烧蚀机理分析与工程计 算[J]. 航天器工程, 2001,10(2):6

[12] 周玉娟. 美国载人宇宙飞船热防护系统和材料 [M].运载火箭与返回技术,载人飞船专辑,1987

[13] 孙红卫,凌英,颜鸿斌. 蜂窝增强低密度烧蚀材料的修补技术研究[C]//第六届先进材料技术研讨会,珠海

[14] 凌英,孙红卫,顾兆旃.空间级低密度烧蚀材料研究 [C]//第十一届全国复合材料会议论文集,合肥,2000

[15] 吴国庭. 载人飞船防热方案及材料的确定[J]. 宇 航材料工艺,1993(4):8-11

[16] Danielson O F. Materials for manned spacecraft [C]// AIAA/ASME 7th Structural and Materials Conference, 1996; 176–183

 $[\,17\,]$ Johonson R. Structural and thermal consideration of ablative-covered nomettalic protective shells $[\,C\,]//$ AIAA Fifth Annural Structure and Materials Conference, 1964: 381–385

 $[\,18\,]$ Erb R B. Apollo thermal-protection system development[J]. J. of Spacecraft and Rocket, 1970, 7(6): 727–734

 $[\,19\,]$ Strouhal G. Thermal protection system performance of the apollo command module[C]//AIAA/ASME 7th Structural and Materials Conference, 1966; 184–200

(编辑 李洪泉)

http://www.yhclgy.com 宇航材料工艺 2011 年 第2期

— 8 —