高精度碳纤维复合材料反射面型面精度仿真分析

张娟娟^{1,2} 谢 $\ell^{1,2}$ 梁旭豪^{1,2} 吴文平^{1,2} 朱 妹³

(1 上海复合材料科技有限公司,上海 201112)

(2 上海航天树脂基复合材料工程技术研究中心,上海 201112)

(3 东华大学民用航空复合材料协同创新中心,上海 201620)

文 摘 为全尺寸反射面的实际成型提供理论依据,本文通过建模仿真重点分析了外蒙皮装配偏差、自 重及成型和使用温度差对反射面工作面型面精度(R. M. S)的影响。结果表明,当外蒙皮装配偏移量在0.5 mm内时,其反射面工作面理论R. M. S值的变化量为0.47 μm;在成型放置状态下,反射面11 kg自重其工作面 理论R. M. S值变化量为0.55 μm;反射面夹层结构的成型和使用温度差110 ℃,反射面工作面的理论R. M. S 值变化量为17.79 μm。

关键词 反射面,仿真分析,碳纤维复合材料

中图分类号:V46 DOI:10.12044/j.issn.1007-2330.2022.06.004

Simulation Analysis on the Profile Accuracy of High Precision Carbon Fiber Composite (CFC) Reflector Antenna

ZHANG Juanjuan^{1,2} XIE Long^{1,2} LIANG Xuhao^{1,2} WU Wenping^{1,2} ZHU Shu³

(1 Shanghai Composite Material Science & Technology Co., Shanghai 201112)

(2 Shanghai Engineering Technology & Research Center of Aerospace Resin Based Composites, Shanghai 201112)

(3 Collaborative Innovation Center For Civil Aviation Composite Materials of Donghua University, Shanghai 201620)

Abstract The influence of the outer skin assembly deviation, self-weight, forming and service temperature difference on the profile accuracy especially the R. M. S value of reflector working face is specially analyzed. The results show that through 0.5mm assembly offset of the outer skin, the reflector working face theoretical R. M. S value changes 0.47 μ m. Under the forming and placing condition, the 11kg self-weight has 0.55 μ m deviation on the theoretical R. M. S value of the reflector working face. The temperature difference of it between the forming and service the reflector brings 17.79 μ m change of the theoretical R. M. S value.

Key words Reflector antenna, Simulation analysis, Carbon fiber composites

0 引言

碳纤维复合材料具有密度低、线胀系数极小、物 理及力学性能可设计性佳等特性,被证实是航天领 域理想的天线结构材料^[1]。随着航天制造及新材料 技术的不断进步,对碳纤维复合材料及其应用技术 的研究,已引起高精度曲面天线结构设计及成型工 艺的巨大变革^[2-5]。方宝东等^[6-9]通过对蜂窝夹层结 构热变形分析,获得实际温度对反射面热变形有较 大影响。

目前这些对反射面的研究大部分是不考虑装配

误差和重力的情况下开展的,本文将着重从外蒙皮 装配偏差、产品自重以及固化-使用温度差这3个方 面计算对反射面型面精度的影响,为全尺寸反射面 的实际成型提供理论依据。

1 反射面结构

反射面为碳纤维复合材料蒙皮+铝蜂窝芯复合 形成的截面较厚的非均质夹芯结构,具有质轻、刚性 好等优点。本文的研究对象包含一块反射面主体、 三处连接件和一处固定件。反射面主体为蜂窝夹层 结构,工作曲面为偏置抛物面。偏置抛物面的母线

收稿日期:2021-09-11

基金项目:上海市科技计划项目(205111072001)

第一作者简介:张娟娟,1987年出生,硕士,研究方向为复合材料成型和装配技术。E-mail:13651790789@139.com

方程式 Z²=4FY, 焦距 F=1 382.8 mm, 旋转抛物面的 旋转轴为 Y轴, 反射器的工作面方程为:

 $Z^2 + X^2 = 4 \times 1382.8 \times Y$

3个方向的尺寸范围为:-830 mm < X < 830 mm, 4.37 mm < Y < 595.87 mm, 155.46 mm < Z < 1 815.46 mm。口面为椭圆平面,椭圆长轴为1762.2 mm,短 轴为1660 mm。整个反射面结构通过底部和左右两 侧的连接件与星体主结构进行连接,顶部安装爆炸 螺栓,工作时与主体分离展开。该反射面的蒙皮材 料为M55J碳纤维增强树脂基复合材料,厚度为0.5 mm,夹层厚度为30 mm,铝蜂窝芯子规格为5 mm× 0.03 mm,连接埋件材料为钛合金,产品自重为11 kg,其结构如图1所示。反射面成型后,需满足型面 精度(R.M.S) < 0.05 mm。

本文的仿真分析变形后的型面用轮廓度来表 征,反射面型面通过三维测量或拍照等方式拟合出 一个抛物面与理论抛物面比对。在拟合的多种抛物 面中,只有一个拟合抛物面与理论抛物面的均方根 偏差最小,我们将这个面称之为最佳拟合抛物面,此 时的型面变形的均方根既R.M.S值称为型面精度。 通过提取反射器工作面(即内蒙皮上表面)上所有节 点温度变化前后相关的位移参数,采用当前用的比 较多的定焦拟合方法计算R.M.S值^[10-11]。R.M.S的 计算公式如下:

$$d_{\text{R.M.S}} = \sqrt{\frac{1}{n} \sum [(x_i - \widetilde{x_i})^2 + (y_i - \widetilde{y_i})^2 + (z_i - \widetilde{z_i})^2]}$$

式中, (x_i, y_i, z_i) 为节点 *i* 的空间坐标; $(\widetilde{x_i}, \widetilde{y_i}, \widetilde{z_i})$ 节

的最佳拟合抛物面上的坐标。

2 材料属性及模型建立

根据材料相关标准可以查到该天线反射面部分的材料参数见表1、表2,根据实测数据得到M55J碳 纤维树脂基复合材料相关参数见表3所示。

表 I 材料属性						
	Tab. 1 M	laterial prope	rties			
材料	<i>E</i> /GPa	$\alpha l/10^{-6}$ °C ⁻¹	$\rho/{\rm g} \cdot {\rm cm}^{-3}$	μ		
铝蜂窝原材料	70	23	2.8	0.3		
连接件	107.8	7.89	4.5	0.3		

	表 2	铝蜂窝(5mm×0.03mm)等效模型属性
Tab. 2	Equivalent mo	odel properties of aluminum honeycomb(5 mm×0.03 mm)

点i

E_1 /kPa	E_2 /kPa	E ₃ /MPa	$ ho/{ m kg} \cdot { m m}^{-3}$	G_{12}/kPa	G_{13}/MPa	G_{23}/MPa	$\alpha_{\rm l}/10^{-6}{\rm ^{\circ}C^{-1}}$
35	35	485	26	8	93.27	93.27	23

表 3 碳纤维(M55J)复合材料蒙皮材料属性 Tab. 3 Carbon fiber(M55J)composite material properties

E_1 /GPa	E_2 /GPa	$ ho/{ m g} \cdot { m cm}^{-3}$	G_{12}/GPa	G_{13} /GPa	<i>G</i> ₂₃ /GPa	$\alpha_{11}/10^{-6}$ °C ⁻¹	$\alpha_{22}/10^{-6}$ °C ⁻¹	$\alpha_{33}/10^{-6}$ °C ⁻¹
145	145	1.6	4	4	2	0.34	0.34	32.3

根据三维模型,采用仿真分析软件建立包含蜂 窝等效实体、再用节点生成网格的方法,以内侧单元 为基准,法向偏置得到新的单元。内、外蒙皮均由蜂 窝的等效实体模型偏置得到,然后赋予对应的材料 宇航材料工艺 http://www.yhclgy.com 2022年 第6期 属性,这样保证蒙皮与蜂窝通过共节点连接。

建立包含碳纤维蒙皮、铝蜂窝芯、连接件以及模 具刚性支撑面在内的天线反射面有限元模型,该有 限元模型如图2所示。

— 29 —

图 2 天线反射面的有限元模型

Fig. 2 Finite element model of the antenna reflector

3 型面精度仿真分析

梳理反射面整个成型和使用过程,装配、测量状态和使用温度是引起反射面型面精度不可忽视的3 个因素,本文就这3个方面设置5个工况对反射面变 形进行详细分析。

工况1:外蒙皮装配无偏移,考虑产品自重,成型 和使用温度相差110℃。

工况2:外蒙皮装配周向偏移0.2 mm,考虑产品 自重,成型和使用温度相差110 ℃。

工况3:外蒙皮装配周向偏移0.5 mm,考虑产品 自重,成型和使用温度相差110 ℃。

工况4:外蒙皮装配无偏移,消除产品自重,成型 和使用温,相差110℃。

工况5:外蒙皮装配无偏移,考虑产品自重,成型 和使用温度一致。

3.1 外蒙皮装配偏差对反射面型面精度的影响

外蒙皮偏移量对反射面工作面R.M.S值影响仿 真分析,结果见图3。对云图数据提取得到最大位移 和定焦拟合的R.M.S值,见表4。

分析比较图3可知:不同外蒙皮偏移量对型面变 形云图和R.M.S拟合图的分布情况基本一致,最大 变形均集中于底部连接件边缘区域附近,R.M.S变 形集中于顶部固定件附近区域。从表4数值可知:在 自重状态下外蒙皮无偏移时,由成型温度130℃降温 至室温20℃时,反射面工作面R.M.S值为27.67 µm;当外蒙皮沿反射面周向偏移0.2和0.5 mm时, 反射面工作面R.M.S值分别为27.94和28.41 µm。 比较分析可知,当外蒙皮周向偏移量不超过0.5 mm时, 对反射面工作面理论R.M.S值的影响在1 µm之内。

outer skin R. M. S value

表4 外蒙皮偏移量对应的型面 R. M. S值 Tab. 4 R. M. S value of the profile corresponding to the outer skin offset

工况	s/ mm	R.M.S/µm
外蒙皮无偏移	0.290	27.67
外蒙皮装配周向偏移0.2 mm	0.290	27.94
外蒙皮装配周向偏移0.5 mm	0.290	28.41

3.2 自重对反射面固化型面精度的影响

反射面自重对工作面 R. M. S值影响仿真分析, 结果见图 4。对云图数据提取得到最大位移和定焦 拟合的 R. M. S值,见表 5。

由图4可知,产品有无自重情况下的变形云图和 R.M.S拟合图的分布情况基本一致,最大变形均集 中于底部连接件边缘区域附近,R.M.S变形集中于 顶部固定件附近区域。分析表5数据可知,当不考虑 自重,由130℃降温至20℃时,反射面工作面的理论 R.M.S值为28.23 μm,相比于有自重 R.M.S值为 27.67 μm,该反射面11 kg的自重对其工作面 R.M.S 的贡献值为0.56 μm。

宇航材料工艺 http://www.yhclgy.com 2022年 第6期

-30 -

表 5 产品自重对应的型面 R. M. S值 Tab. 5 R. M. S value of surface corresponding to the product self-weight

工况	s/ mm	R.M.S/ μm
有产品自重11 kg	0.290	27.67
产品失重	0.285	28.23

3.3 温差对反射面型面精度的影响

反射面成型和使用温度差对工作面 R. M. S值影响仿真分析,结果见图 5。对云图数据提取得到最大位移和定焦拟合的 R. M. S值,见表 6。从图 5变形云

图可知,成型和使用温度之间有无公差,反射面的最 大变形集中分布于底部连接件边缘区域附近;但是, 当两者温度相差110℃时,最大热变形集中分布于底 部连接件边缘区域附近;而当两个温差为0℃时,最 大热变形均匀分布于底部连接件本体安装区域附 近。从R. M. S拟合图可以看出,成型和使用温度相 差110℃时,R. M. S变形集中于顶部固定件附近区 域;而当两者温度相差0℃时,R. M. S变形在整个反 射面区域分布较均匀。从表6数据可知成型温度和 使用温度的温差110℃对反射面工作面理论R. M. S 值的影响值为17. 79 μm,需重点关注。

表 6 有无温差对应的型面 R. M. S值 Tab. 6 R. M. S value of profile corresponding to temperature difference

工况	s/mm	R.M.S/µm
成型和使用温度相差110℃	0.290	27.67
成型和使用温度相差0℃	0.219	9.88

4 实际应用验证

为验证仿真分析可信度,装配过程中通过基准 对照的方式控制外蒙皮装配偏差<0.5 mm,采用型面 R. M. S值为10 μm的刚性支撑模具,依次装配内蒙 皮、蜂窝和外蒙皮,并升温至130 ℃固化。固化后对 反射面进行无损探伤,使用影像测量方法检测反射 面型面精度。结果显示反射面无脱粘,型面 R. M. S 实测值为35 μm,满足产品型面精度优于50 μm 要 求,见图6。与工况3的理论仿真计算累加模具偏差 38 μm,两者相差仅为8%,可以验证反射面仿真计算 和型面精度拟合方法的正确性。

图 6 反射面型面测试云图 Fig. 6 Profile test cloud map of reflective surface

5 结论

本文重点分析讨论了外蒙皮装配偏差、自重及 成型和使用温度差对反射面型面R.M.S的影响,主 要得到了以下结论:

(1)当外蒙皮偏移量小于 0.5 mm 时,其反射面工作面理论 R. M. S值的变化量为 0.74 μm;

(2)在成型放置状态下,反射面11 kg 自重对反 - 31 -

射面工作面理论 R. M. S值变化量为 0.56 μm;

(3)反射面夹层结构的成型和使用温度差
 110 ℃,反射面工作面的理论 R. M. S 值变化量为
 17.79 μm。

参考文献

[1] 敖辽辉. 高精度碳纤维复合材料抛物面天线制造技 术[J]. 工程塑料应用,2002,30(7):16-18.

AO L H. Manufacturing technology of high-precision carbon fiber composite parabolic antenna [J]. Engineering Plastics Application, 2002, 30(7):16-18.

[2] 房海军,涂彬.碳纤维复合材料卫星天线反射面型面 精度稳定性分析[J]. 航天返回与遥感,2007,28(1):67-71.

FANG H J, XU B. Stability analysis of profile accuracy of carbon fiber composite satellite antenna reflector [J]. Space Return And Remote Sensing, 2007, 28(1):67–71.

[3] 黄洋,袁春野,宋世涛.碳纤维复合材料在航天领域的应用[J]. 科技展望,2017,26:175.

HUANG Y, YUAN C Y, Song S C. Application of carbon fiber composite materials in the aerospace field [J]. Technology Outlook, 2017, 26:175.

[4] 张晨辉.大口径双反射面天线反射体成型工艺研究 [J].玻璃钢/复合材料,2004(1):38-39.

ZHANG C H. Research on the molding process of the large aperture dual reflector antenna reflector [J]. FRP/Composite Materruals, 2004(1):38–39.

[5] 李威, 郭权锋. 碳纤维复合材料在航天领域的应用 [J]. 中国光学, 2011, 4(1): 201-212.

LI W, GUO Q F. Application of carbon fiber composite materials in the aerospace field [J]. China Optics, 2011, 4(1): 201–212.

[6]方宝东,张建刚,申智春,等. 航天器蜂窝夹层结构复合材料热变形分析[J]. 上海航天,2007,28(3):44-48.

FANG B D, ZHANG J G, SHEN Z C, et al. Thermal deformation analysis of composite material of spacecraft honeycomb sandwich structure [J]. Shanghai Aerospace, 2007, 28 (3):44-48.

[7]方宝东,李应典,张建刚.新一代地球同步轨道气象 卫星结构热变形分析[J].上海航天,2006,23(6):50-53.

FANG B D, LI Y D, Zhang J G. Thermal deformation analysis of the new generation geosynchronous orbit meteorological satellite structure [J]. Shanghai Aerospace, 2006, 23 (6):50-53.

[8]周涛,叶周军,史耀辉,等.星载蜂窝夹层结构固面 天线反射器的热变形[J].复合材料学报,2018,35(8): 2065-2073.

ZHOU T, YE Z J, SHI Y H, et al. Thermal deformation of solid surface antenna reflector with honeycomb sandwich structure on satellite[J]. Journal of Composite Materials, 2018, 35 (8):2065-2073.

[9] 唐羽烨、薛明德. 蜂窝夹心板的热血和力学特性分析[J]. 复合材料学报,2005,22(2):130-136.

TANG Y Y, XUE M D. Analysis of thermal and mechanical properties of honeycomb sandwich panel[J]. Journal of composite Materials, 2005,22(2):130–136.

[10] 马增祥,杨德华,王淑青,等.基于刚体位移的天线 反射面拟合新算法[J]. 机械工程学报,2010,46(18):29-35.

MA Z Q, YANG D H, WANG S Q, et al. New algorithm for fitting antenna reflection surface based on rigid body displacement [J]. Journal of Mechanical Engineering, 2010, 46 (18): 29–35.

[11] 王从思,段宝岩,仇原鹰. 基于最小二乘法的天线变 形反射面的拟合[J]. 现代雷达,2004,26(10):52-55.

WANG C S, DUAN B Y, QIU YY. Fitting of distorted reflector antenna surface based on least square method [J]. Moder Rader, 2004, 26(10):52–55.