# 厚壁碳/酚醛复合材料热压罐固化工艺优化

# 马飞杨雯 梁希凤

(西安航天复合材料研究所,西安 710025)

文 摘 厚壁碳/酚醛复合材料在固化过程中容易产生较大的温度梯度,造成固化不均匀。为了解此类产 品在固化过程中内部的温度变化和分布,通过在产品内部预埋热电偶的方式,开展了温度监测实验。同时采用 DSC 及凝胶实验对树脂的固化特性进行了分析。结果表明:在初期阶段的升温过程中,产品内部温度远低于罐 体内的温度;酚醛树脂随着温度的升高,流动性能变好,在95~100℃时开始凝胶,出现聚合放热现象。依据以 上实验结果对固化工艺进行了优化,主要包括延长各温度点的保温时间、延缓初期的升温速率、调整加全压的 时机、增加树脂凝胶温度点的保温段。最后对优化后的固化工艺进行了验证,结果表明优化后的固化工艺合 理,产品经超声波检测,内部缺陷大大减少,质量均一性得到了有效提高。

**关键词** 热压罐,碳/酚醛,固化工艺,超声波检测,缺陷 中图分类号:TB3 DOI:10.12044/j.issn.1007-2330.2017.03.012

# Optimize Curing Process in Autoclave of Thick Wall Carbon Fibers/Phenolic Composite

MA Fei YANG Wen LIANG Xifeng

(Xi'an Aerospace Composites Research Institute, Xi'an 710025)

**Abstract** A great temperature gradient easily occurred in the curing process of the thick wall carbon fibers/phenolic composite, usually caused an uneven curing. This paper focused on the research of temperature change inside this kind of product during curing through a temperature monitoring experiment by immersion a thermocouple inside of the product. Meanwhile, the curing reaction behavior of phenolic was studied by DSC technique and gel test. Experimental results showed that internal temperature of product was much belower than inside of autoclave during the early stage of raising temperature. The resin flew better with increase of temperature, and exothermic polymerization began when the resin gel at  $95^{\circ}$ C to  $100^{\circ}$ C. Then the curing system is optimized according to the experiment results, including extend holding time of each temperature, delay the heating rate at early time, adjust the time of total pressure and increase preservation at gel. In the end, the verification is conducted. The results show that optimized curing system is reasonable, a great decrease of defect is confirmed by ultrasonic detector and the quality uniformity of product is improved effectively.

Key words Autoclave, Carbon Fibers/Phenolic, Curing system, Ultrasonic detector, Defect

0 引言

碳/酚醛复合材料已广泛应用于固体火箭发动机 喷管等防热构件<sup>[1-3]</sup>。随着武器系统的升级,火箭发 动机喷管的工况条件将更加严苛,为提高发动机的可 靠性,一般通过增加碳/酚醛材料的厚度来满足要求。 对于厚度<20 mm 的产品,在通常的固化历程下,就 能够得到性能良好的复合材料产品<sup>[4]</sup>。当产品的厚 度>20 mm 时,在固化过程中容易产生较大的温度梯 度,并导致产品内部较大残余应力的出现和分层现象的发生<sup>[5-7]</sup>。为了解此类厚壁碳/酚醛产品在固化过程中内部温度变化,指导类似结构产品的固化成型,本文通过温度监测实验,优化了适合于厚壁碳/酚醛复合材料的热压罐固化工艺。

1 实验

#### 1.1 主要原材料

1K 聚丙烯腈基平纹碳布:吉林神州碳纤维有限

收稿日期:2016-12-01;修回日期:2017-03-07

第一作者简介:马飞,1984年出生,硕士,工程师,主要从事树脂基复合材料的研究。E-mail:morphine1984@126.com

责任公司,牌号:JT300A-1KB-A10-1;低压钡酚醛树 脂:北京玻钢院复合材料有限公司,牌号:DFQS-3。

#### 1.2 设备及仪器

●1 m×3 m 热压罐,航空规划设计院;DSC2014F1 型 差示扫描量热仪,德国耐驰仪器制造有限公司;TH-01250-B 精密控温烘箱,赛普斯天宇设备有限责任公司;E
型热电偶:WREK-100 型;无纸记录仪:显示精度(0.5±0.
03)℃;HS5 衰减型超声波探测仪。

# 1.3 实验过程

# 1.3.1 产品内部测温实验

实验的产品厚度约为 36.5 mm,按照图 1 所示位置,设定 3 个测温点,埋入 3 根热电偶,用于监测在固化过程中不同位置的温度变化情况。



Fig.1 Distribution of the temperature measurement point



#### 1.3.2 树脂凝胶实验

根据 GJB1059.4,进行钡酚醛树脂的凝胶实验, 观察树脂状态的变化情况,记录钡酚醛树脂在不同温 度下的凝胶情况,为固化工艺的优化提供数据支撑。

## 1.3.3 树脂 DSC 测试

对酚醛树脂进行 DSC 分析,分别测试不同升温 速率下的固化反应特性,外推出固化反应起始温度 *T*<sub>i</sub>、固化反应峰顶温度 *T*<sub>p</sub>、固化终止温度 *T*<sub>f</sub>,并与测 温实验得出的结果进行对比。

#### 1.4 检测与分析

依据所标准 Q/GB 201—2005《布带缠绕件超声 波检测及放行标准》,采用 HS5 衰减型超声波探测仪 对产品内部质量情况进行检测,对优化前后的固化工 艺做出评价。

2 测温结果与分析

## 2.1 测温实验分析

热电偶埋入完成后,将热电偶引线分别经真空铜 管、热压罐内的真空过壁管穿出后,外部接线端子与 无纸记录仪相连接,如图2所示。





准备工作完成后,测温实验的固化工艺按以下历 程执行,其中升温开始加初压,至(80±3)℃时开始加 全压;固化开始即抽真空,真空度≤-0.093 MPa,温 度至 165℃时停止抽真空。

将准备好的测温产品放入热压罐中,按设定好的 固化工艺进行实验,通过无纸记录仪实时采集模具表 面、产品中间及外部三个位置在不同时间段的温度情 况,具体结果如图 3 所示。



— 54 —

从图3可以看出,由于气体比热容小于金属与复 合材料的比热容,所以升温初期,罐体内温度高于产 品内部的温度。当温度达到 80℃时开始加全压,此 时罐体内温度出现一个快速上冲阶段,温度由80℃ 升至 94℃(*a* 点). 温度由出现上冲至恢复到 80℃的 持续时间约为56 min.这一现象的原因可以由"理想 气体状态方程"解释。

当80℃保温2h结束时,碳层中间温度只有 58.5℃(b点),远远低干罐体内温度。此后随着罐体 内温度继续升高,产品各部位温度也有所升高,但仍 远低干罐体内温度。当碳层中间温度达到约100℃ 时(图中c点),碳层中间测温点温度曲线斜率逐渐 增大(tg α由 0.32 增加至 0.44), 温度上升速度增大, 说明此时产品内部树脂开始反应。当120℃保温至 85 min 时,开始出现碳层中间与碳层外部温度高干罐 体内温度的现象(d 点),通过分析认为主要是由于酚 醛树脂发生聚合反应,大量放热导致温度升高。

### 2.2 树脂 DSC 分析

对酚醛树脂进行 DSC 分析,外推做出 3 点固化 温度(图4),可以看出,其反应起始、峰顶及终止温度 分别为 105.1、139.6 和 162.85℃。测试结果的 T<sub>i</sub> 与 测温产品中的分析结果一致。



Fig.4 Curing extrapolation chart of phenolic

#### 2.3 树脂凝胶实验分析

根据 GJB 1059.4,进行钡酚醛树脂的凝胶实验。 采用精密控温烘箱,烘箱的升温速率与测温实验的温 度制度相同,温度在80~100℃时,每5℃用玻璃棒搅 动树脂原胶,观察树脂流动情况;超过100℃时,每 2℃观察树脂流动情况(表1)。可以看出,酚醛树脂

在95℃之前未发生反应.95~100℃时树脂表面开始 "结皮",出现凝胶:104℃以后全部凝胶,逐渐变为橡 胶状黏弹体,当温度继续上升至110℃时完全变为固 杰。

表 1 酚醛树脂凝胶情况表 т

| ab.1 | Gel | course | of | phenolic |
|------|-----|--------|----|----------|
|------|-----|--------|----|----------|

|      |           | -    |      |
|------|-----------|------|------|
| 温度/% | C 流动情况    | 拉丝情况 | 溶解情况 |
| 80   | 流动        | 未拉丝  | 可溶解  |
| 85   | 流动        | 未拉丝  | 可溶解  |
| 90   | 流动        | 未拉丝  | 可溶解  |
| 95   | 表面结皮,内部流动 | 未拉丝  | 可溶解  |
| 100  | 不流动,开始凝胶  | 未拉丝  | 可溶解  |
| 102  | 不流动       | 拉丝   | 可溶解  |
| 104  | 全部凝胶      | 拉丝   | 可溶解  |
| 106  | 橡胶状,弹性大   | 不拉丝  | 半溶解  |
| 108  | 橡胶状,弹性小   | 不拉丝  | 半溶解  |
| 110  | 变硬,无弹性    | 不拉丝  | 不溶解  |

# 3 工艺优化

综上可知, 酚醛树脂在 95℃之前具有良好的流 动性,并且温度越高流动性越好。热压罐固化时,由 于比热容的不同,罐体内温度要高于产品内部温度, 因此需要延长保温时间,使产品内部温度与罐体内温 度尽可能接近。酚醛树脂在 95~100℃时开始凝胶。 出现聚合放热现象,需要在固化过程中设置一个保温 段,以防止聚合速度过快导致产品内部温度急剧上 升。因此固化工艺制度进行如下调整。

(1)将80℃保温提高到85℃,保温时间从2h延 长至3h,在升至100℃之前,升温速率从20℃/h降 至(15~17)℃/h,以尽可能缩小罐体内温度和产品内 部温度的差异。

(2)在醛树脂凝胶起始点100℃附近增加一个保 温段,使树脂得到充分反应,同时消除树脂聚合反应 过程中由于温度过高导致的树脂爆聚现象,减缓固化 反应的剧烈程度。

(3)将加全压时机调整到85℃保温3h结束,根 据测温实验可以推测出,此时产品内部温度已经接近 85℃,树脂流动性好,加全压(2.3~2.5) MPa 后,既可 以保证压实效果,不会造成产品贫胶,也不会造成温 度过高而使树脂提前凝胶。

根据测温实验结果,将固化制度优化,固化开始 即抽真空,真空度≤-0.093 MPa,温度至 165℃时停 止抽真空。固化工艺优化前后对比见图 5。

16~17℃/h 15℃/h 20℃/h 室温 m 100 °C 100 % 0.5~0.7 MPa 0.5~0.7 MPa 2.3~2.5 MPa 2.3~2.5 MPa 2.3~2.5 MPa 150 min 自然冷却 ≤ 40℃出罐 165℃ 120°C 120°C 165℃ 降压 2.3 -2.5 MPa 2.3~2.5 MPa 2.3~2.5 MPa

宇航材料工艺 http://www.yhclgy.com 2017年 第3期 — 55 —



图 5 固化工艺优化前后对比图



#### 4 结果验证

采用优化前后的固化工艺分别进行了某型号产

品的生产,通过 HS5 衰减型超声波探测仪对产品内 部的质量进行了检测,检测结果见表 2。

表 2 产品超声波检测结果

Tab.2 Ultrasonic test results of the products

| 产品 | 固化工艺 | 检测结果                                                                                                                                                                                                    |
|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1# | 优化前  | $53 \sim 68 \text{ dB}, 33 \sim 45(413 \text{ cm}^2), 35 \sim 46(209 \text{ cm}^2), 38 \sim 45(24 \text{ cm}^2), 33 \sim 41(55 \text{ cm}^2), 39 \sim 45(35 \text{ cm}^2), 40 \sim 46(13 \text{ cm}^2)$ |
| 2# | 优化后  | 51~66 dB,无异常区域                                                                                                                                                                                          |

从表 2 的检测结果可以看出,采用优化前的固化 工艺生产的产品 1 存在大面积的缺陷,而采用优化后 的固化工艺生产的产品 2 检测未发现任何异常,产品 内部质量均一性良好。因此通过对比两种固化工艺 可以看出,优化后的固化工艺更适合于厚壁碳/酚醛 复合材料的固化成型。

### 5 结论

以厚壁碳/酚醛复合材料为研究对象,通过开展 温度监测实验,了解了该类结构产品在固化过程中内 部不同位置的温度变化和分布,同时依据测温实验的 结果、树脂 DSC 分析及凝胶实验的结果对固化工艺 进行了优化,优化的内容包括:延长各温度点的保温 时间、延缓初期的升温速率、调整加全压的时机、增加 树脂凝胶温度点的保温段。最后对优化后的固化工 艺进行了验证,结果表明:采用优化后的固化工艺合 理,产品经超声波检测,内部缺陷大大减少,质量均一 性得到了有效提高。

#### 参考文献

[1] 王光林,蔡娥,等.固体火箭发动机设计[M].航空专 业教材编审室,1985.

[2] 邱哲明,陈明义,杨传荣,等.固体火箭发动机材料与 工艺[M].北京:宇航出版社,1995:1-10.

[3] 王井岗,汤佳奇,焦扬声.耐烧蚀材料的进展—碳纤 维/酚醛、碳/碳复合材料的研究和应用[J].玻璃钢/复合材 料,1993(2):26.

[4] 郭战胜,张俊乾,等.厚截面复合材料的制造工艺及 其力学问题[C].第十五届全国复合材料学术会议论文集(上 册),哈尔滨,2008:449-452.

[5] KIM J S, LEE D G.Development of an autoclave cure cycle with cooling and reheating steps for thick thermoset composite laminates[J].Journal of Composite Materials, 1997, 31(22):2264–2282.

[6] YANG Z L, LEE S. Optimized curing of thick section composite laminates [J]. Materials and Manufacturing Processes, 2001,16(4):541-560.

[7] 张纪奎,付正国,吴烈苏,等.厚截面复合材料结构固化 残余应力研究进展[J].高科技纤维与应用,2012,37(6):57-62.

— 56 —