一种80℃固化环氧树脂体系的非等温固化动力学

樊孟金 周 宇 尚呈元 蒋文革 郭鸿俊

(航天材料及工艺研究所,北京 100076)

文 摘 采用非等温 DSC 研究了 80℃ 固化环氧树脂体系 LTCEP 的非等温固化行为。采用 Gaussian-Lorentzian 加和模型对 DSC 曲线进行分峰处理,采用 Flynn-Wall-Ozawa 法确定不同阶段反应的活化能随转化 率的变化情况。然后采用 Málek 方法研究不同阶段反应的非等温固化动力学,得到树脂体系总的反应速率方 程并预测树脂体系在不同温度下的固化行为。最后采用拉伸测试表征了 LTCEP 体系的力学性能。非等温 DSC 结果表明该树脂体系的 DSC 曲线可用三个独立的放热峰进行叠加来拟合;三个阶段反应活化能随转化率 的变化均不明显,其活化能平均值分别为 85.98、84.85 和 87.16 kJ/mol;Šesták-Berggren 模型可很好地描述该树 脂体系在不同阶段的固化行为。预测 LTCEP 在 150℃下 3 min、140℃下 5.5 min 即可达到 90%转化率。拉伸 测试结果表明 LTCEP 经 80℃ 固化后拉伸强度和断裂伸长率分别为(51.34±11.78) MPa 和(1.23±0.34)%, 125℃后处理对拉伸性能影响不大。

关键词 环氧树脂,80℃固化,固化动力学,DSC 中图分类号:TQ 320.1 DOI:10.12044/j.issn.1007-2330.2017.03.005

Non-Isothermal Curing Kinetics of An 80°C Curing Epoxy Resin System

FAN Mengjin ZHOU Yu SHANG Chengyuan JIANG Wenge GUO Hongjun (Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

Abstract DSC was used to study the non-isothermal curing kinetics of an 80°C curing epoxy resin system (LT-CEP), and the sum model coupling the Gaussian distribution and the Lorentzian distribution was used to simulate the DSC peaks. Afterwards the variation of activation energy versus conversion and the non-isothermal curing kinetics for each stage of the curing reaction were studied by the Flynn-Wall-Ozawa method and a model-fitting Málek approach, respectively. The overall reaction rate was obtained according to the peak fit results and then the isothermal curing behaviors at different temperatures were predicted. Finally, tensile experiment is performed to investigate the tensile properties of LTCEP. The peak fit analysis indicated that each DSC curve could be well simulated by using three Gaussian-Lorentzian components. Afterwards the non-isothermal kinetics investigation revealed that the variation of activation energy versus conversion for each stage of the curing reaction changed insignificantly and the curing rates of each stage could be well described by the Šesták–Berggren model. Moreover, it is predicted from the overall reaction rate that the conversion of LTCEP would be up to 90% when this resin system was cured at 150°C for 3 min or 140°C for 5.5 min. The tensile test at room temperature showed that the tensile strength and the elongation at break of LCTEP cured at 80°C for 8 h are respectively 51.34 ± 11.78 MPa and $1.23\%\pm0.34\%$, and the tensile properties did not change significantly after the post treatment on the samples at 125° C.

Key words Epoxy resin, 80°C curing system, Curing kinetics, DSC

0 引言

树脂基复合材料具有比强度和比模量高、抗疲劳

性能好、可设计性强、整体成型工艺性优良等特点^[1],广泛应用于航空航天、轨道交通、能源建筑等

收稿日期:2016-08-09;修回日期:2017-03-03

基金项目:航天材料及工艺研究所技术创新基金课题(900703800803000115916001) 第一作者简介:樊孟金,1986年出生,博士研究生,主要从事树脂基复合材料的研究。E-mail: psefan@ yeah.net

宇航材料工艺 http://www.yhclgy.com 2017 年 第3 期

领域。然而,传统的树脂体系固化温度较高且固化时 间较长,限制了复合材料的进一步应用。近年来,低 温固化^[2]和快速固化复合材料成为先进复合材料领 域的研究热点。复合材料低温固化技术一方面可以 降低固化的能耗及工装模具和辅助材料的费用,另一 方面可降低复合材料构件的残余应力,适于制备大型 或形状复杂的制件^[2-3]。ACG公司生产的 MTM45-1 体系在专门的低温炉内就能发生固化并在先进复合 材料货运飞机 ACCA 中得到了应用^[4-5];HEXCEL 公 司生产的 HexPly[®] M77 环氧树脂基体可实现 150℃ 下 2 min 固化,满足汽车领域产业化需求^[6]。

本文选用潜伏性低温固化剂制备了 LTCEP 环氧 树脂体系,该树脂体系在室温下具有较长的储存期, 在 80℃下可发生固化反应且在 130℃以上可实现快 速固化。由于固化工艺对环氧树脂固化物最终的性 能影响很大^[7-8],因此有必要对其固化行为进行研 究。采用非等温 DSC 研究了 LTCEP 的固化行为,建 立了固化动力学模型,并预测了树脂体系在不同温度 下的等温固化行为,为下一步应用提供理论依据。

1 实验

1.1 主要原料

NPPN-638S 酚醛环氧树脂,深圳市佳迪达化工 有限公司;Thinkhard 608K 低温固化剂,上海众司实 业有限公司;LTCEP 中 NPPN-638S 与 Thinkhard 608K 的质量配比为 100:25;606 环氧树脂体系,自 制。

1.2 DSC 测试

采用 Mettler-Toledo DSC1 研究 LTCEP 的固化行为:称量 10 mg 样品放入顶部开孔的铝制坩锅中,采 用高纯氮气保护。非等温 DSC 测试升温速率分别为 5、10、15 和 20℃/min;等温 DSC 测试温度分别为 80、 95、110 和 125℃。等温 DSC 测试前将仪器预热到设 定温度,待试样放入后迅速开始测试,等温扫描完毕 后将样品迅速冷却至室温,再次以 10℃/min 的升温 速率进行非等温扫描测定样品的残余放热。

1.3 试样的制备及单轴拉伸测试

LTCEP 体系经真空脱泡处理后采用两种固化制度,分别为(1)80℃/8 h 和(2)80℃/8 h + 125℃/2 h;606 树脂体系经真空脱泡处理后采用 100℃/2 h + 125℃/2 h 的固化工艺。单轴拉伸测试依据 GB/T 2567—2008 进行。

2 结果与讨论

2.1 非等温固化动力学分析

LTCEP 的非等温 DSC 曲线如图 1 所示,可见随着升温速率的增加,固化放热峰向高温方向移动,这 是因为升温速率增大时体系来不及固化因而放热峰 会向高温方向移动作为补偿^[9]。另外,该树脂体系的 DSC 曲线较为复杂,说明 LTCEP 的固化反应较为复杂,这可能是因为 LTCEP 体系的成分较为复杂引起的。

采用 Gaussian-Lorentzian 加和模型对 DSC 曲线 进行分峰处理,然后依次对分峰后的曲线进行非等温 固化动力学分析。升温速率为 10℃/min 时 DSC 曲 线及其分峰结果如图 2 所示,可见该 DSC 曲线可近 似用三个独立的放热峰进行叠加来拟合。不同升温 速率下各个峰面积比的平均值为:*A*_{Peak 1}:*A*_{Peak 2}:*A*_{Peak 3} =0.556:0.372:0.072。

根据反应放出的热量与反应程度成正比的假定, 对于各个独立阶段的反应其反应速率方程均可用下 式表示^[10-11]:

$$\frac{\mathrm{d}\alpha_i}{\mathrm{d}t} = \frac{\mathrm{d}H_i/\mathrm{d}t}{\Delta H_{0,i}} = k_i(T)f_i(\alpha_i) \tag{1}$$

式中,*i* 表示不同阶段的反应, α 为反应转化率,*t* 为反 应时间, ΔH_0 为该阶段反应总的放热, $f(\alpha)$ 表示反应 机理函数,k(T)为与温度有关的反应速率常数^[12]且 一般认为其服从 Arrhenius 方程:

$$k_i(T) = A_i \exp\left(-\frac{E_{\alpha,i}}{\mathbf{R}T}\right)$$
(2)

宇航材料工艺 http://www.yhclgy.com 2017 年 第3期

-20 -

式中,A为指前因子, E_a 为反应表观活化能,R为普适 气体常数,T为绝对温度。 E_a 可通过多种方法求得, 采用 Flynn-Wall-Ozawa 方法^[13-14]来计算 LTCEP 非 等温固化各阶段反应活化能随转化率的变化关系:

$$\ln\beta = \text{Const.} - \frac{1.052E_{\alpha,i}}{\text{R}T_{\alpha,i}}$$
(3)

式中, β 为升温速率, E_{α} 为转化率为 α 时的固化反应 活化能, T_{α} 为在升温速率 β 下转化率为 α 时对应的绝 对温度。以第一阶段反应(Peak 1)为例,不同升温速 率下 α_i 随T的变化情况如图 3 所示。以 ln β 对 1/ $T_{\alpha,i}$ 作图,经线性拟合即可计算出反应达到一定转化率时 的反应活化能,不同阶段的反应 $E_{\alpha,i}$ 随 α_i 的变化关系 如图 4 所示,可见对于不同阶段的反应, $E_{\alpha,i}$ 随 α_i 的变 化不明显。三个阶段反应的活化能的平均值分别为 85.98、84.85 和 87.16 kJ/mol。

图 3 不同升温速率下转化率随反应温度的变化情况(Peak 1)

采用 Málek 方法^[10,15]来确定不同阶段反应的动 力学机理函数。根据 Málek 方法,需构造两个特征函 数 $y(\alpha)$ 和 $z(\alpha)$,以此来确定具体的反应动力学模型 和求解对应的动力学参数:

$$y(\alpha_i) = \left(\frac{\mathrm{d}\alpha_i}{\mathrm{d}t}\right) \exp(\mathcal{X}_i) \tag{4}$$

宇航材料工艺 http://www.yhclgy.com 2017 年 第3期

$$z(\alpha_i) = \pi(\mathcal{X}_i) \frac{\mathrm{d}\alpha_i}{\mathrm{d}t} \cdot \frac{T}{\beta}$$
(5)

式中,X 表示 E_a/RT , $\pi(X)$ 为温度积分式^[16], 其值可用 SENUM-YANG^[17]的四级有理式来近似计算:

$$\pi(\chi_i) \approx \frac{\chi_i^3 + 18\chi_i^2 + 88\chi_i + 96}{\chi_i^4 + 20\chi_i^3 + 120\chi_i^2 + 240\chi_i + 120}$$
(6)

将实验数据及求得的反应活化能的平均值代入 式(4)和式(5),可得不同阶段的反应在不同升温速 率下的 $y(\alpha_i) - \alpha_i \pi z(\alpha_i) - \alpha_i$ 曲线。图5所示的是第 一阶段的反应在 10°C/min 的升温速率下得到的 d\alpha_1/dt-\alpha_1、归一化的 $y(\alpha_1) - \alpha_1$ 和归一化的 $z(\alpha_1) - \alpha_1$ 曲线,这三条曲线的峰值对应的转化率分别用 $\alpha_{p,1}$ 、 $\alpha_{M,1} \pi \alpha_{p,1}$ *表示,不同反应及不同升温速率下的数 据归纳在表1中。

随 α₁的变化关系(Peak 1,10℃/min)

从表 1 中可以看出,对于不同阶段的反应均满足 $0 < \alpha_{M,i} < \alpha_{p,i} \pm \alpha_{p,i} \stackrel{*}{=} \neq 0.632$,根据 Málek 方法的判据 可推断 SB(m, n)模型^[10,12,15]最适合来描述这些反 应的固化行为,即各阶段反应的速率可用下式来表 述:

$$\frac{\mathrm{d}\alpha_i}{\mathrm{d}t} = A_i \mathrm{e}^{-\chi_i} \alpha_i^{m_i} (1 - \alpha_i)^{n_i} \tag{7}$$

式中,*m*、*n* 为反应级数。式(7)可变形为: $\ln\left[\left(\frac{\mathrm{d}\alpha_{i}}{\mathrm{d}t}\right)\exp(\chi_{i})\right] = \ln A_{i} + n_{i}\ln\left[\alpha_{i}^{m_{i}/n_{i}}(1-\alpha_{i})\right]$ (8)

式中, $m_i/n_i = \alpha_{M,i}/(1-\alpha_{M,i})^{[10]}$ 。在 0.1 $\leq \alpha_i \leq 0.9$,以 ln[(d α_i/dt) exp(χ_i)对 ln[$\alpha_i^{m_i/n_i}(1-\alpha_i)$]作图,通过 线性拟合即得拟合直线的斜率为 n_i ,截距为 ln A_i ,通 过进一步计算可得 m_i 的值,详细结果一并归纳在表 1 中。

-21 -

表 1	不同反应 升温速率下α	α 和 a	◎ 及动力学参数的值
7X I	个问及应、几应还至下 α_n	$_{i} \alpha_{M i} T H \alpha_{n i}$	

Tab.1 Values of $\alpha_{n,i}$, $\alpha_{M,i}$ and $\alpha_{n,i}^{\infty}$, along with the calculated kinetic parameters

for the different	ent stage of the curin	g reaction at differen	t heating rates

-	β /°C •min ⁻¹	$lpha_{ m p,i}$	$\alpha_{\mathrm{M,i}}$	$\alpha_{\mathrm{p,i}}^{\infty}$	n _i	m_{i}	$\ln A_i$
	5	0.499	0.316	0.512	1.184	0.547	26.170
Peak 1	10	0.500	0.316	0.513	1.191	0.550	26.163
	15	0.501	0.315	0.515	1.191	0.548	26.127
	20	0.500	0.316	0.514	1.194	0.552	26.130
Mean					1.190	0.549	26.148
	5	0.499	0.337	0.512	1.165	0.592	24.581
Peak 2	10	0.500	0.336	0.512	1.152	0.583	24.544
	15	0.500	0.336	0.513	1.167	0.591	24.513
	20	0.500	0.336	0.513	1.147	0.580	24.537
Mean					1.158	0.586	24.544
	5	0.500	0.350	0.512	1.142	0.615	23.958
Peak 3	10	0.501	0.350	0.513	1.120	0.603	23.939
	15	0.501	0.349	0.513	1.131	0.606	23.868
	20	0.501	0.349	0.513	1.111	0.596	23.917
Mean					1.126	0.605	23.920

将表1中的动力学参数代入式(7),可得各阶段 反应的速率方程:

$$\frac{\mathrm{d}\alpha_{1}}{\mathrm{d}t} = 2.269 \times 10^{11} \mathrm{exp} \left(\frac{-85980}{\mathrm{R}T}\right) \alpha_{1}^{0.549} (1-\alpha_{1})^{1.190} (9)$$

$$\frac{\mathrm{d}\alpha_{2}}{\mathrm{d}t} = 4.563 \times 10^{10} \mathrm{exp} \left(\frac{-84850}{\mathrm{R}T}\right) \alpha_{2}^{0.586} (1-\alpha_{2})^{1.158}$$

$$(10)$$

$$\frac{\mathrm{d}\alpha_{3}}{\mathrm{d}t} = 2.447 \times 10^{10} \mathrm{exp} \left(\frac{-87160}{\mathrm{R}T}\right) \alpha_{3}^{0.605} (1-\alpha_{3})^{1.126}$$

(11)

从式(9)~(11)可以看出,不同放热峰对应的反 应其指前因子 A 和表观活化能 E_a的值均较高。E_a决 定了反应速率对温度的敏感性,E_a的值高说明体系的 固化反应速率对固化温度很敏感。如此,树脂体系在 更低的温度(如室温)下反应速率将大大降低,有利 于提高树脂体系室温储存稳定性;相反,在中高温度 (如>130℃)下树脂体系的反应速率将迅速提高,加 上指前因子的值较大,因而在中高温度下有可能实现 快速固化。将不同峰值所占的比例考虑进去,得 LT-CEP 非等温固化总的反应速率方程:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = 0.556 \frac{\mathrm{d}\alpha_1}{\mathrm{d}t} + 0.372 \frac{\mathrm{d}\alpha_2}{\mathrm{d}t} + 0.072 \frac{\mathrm{d}\alpha_3}{\mathrm{d}t} \qquad (12)$$

采用基于 4 阶 Runge-Kutta 算法的常微分解析 软件计算式(9)~(11),初始条件分别设为当 T = 350、370 及 390 K 时,对应的转化率为 10⁻⁷。图 6 为 10℃/min 的升温速率下模型计算得到的数据(实线) 与实验数据或分峰得到的数据(圆点)的对比,可见 SB(m,n)模型可很好地描述 LTCEP 不同阶段的非等 温固化行为。不同升温速率下模型拟合得到的数据 与实验数据的对比如图 7 所示,可见式(12)可以很 好地描述 LTCEP 总的非等温固化行为。

— 22 —

2.2 利用非等温固化模型预测等温固化行为

由图 8 可见, LTCEP 树脂体系的等温固化反应 速率对温度非常敏感,随着反应温度的升高,反应速 率迅速增大,这主要归因于该树脂体系高的反应活化 能。从等温 DSC 测试结果可知,该树脂体系在 80℃ 下固化 7.5 h 后,转化率可达约 65%。

再次利用基于 4 阶 Runge-Kutta 算法的常微分 解析软件计算式(9)~(11),可预测特定温度 T 下不 同反应的转化率随时间的变化关系(积分初始条件 为当 t=0 时, $\alpha=10^{-7}$)。在特定温度 T 和特定时间 t下,树脂体系总的转化率可由下式计算:

α = 0.556α₁ + 0.372α₂ + 0.072α₃ (13) 进而可得树脂体系总的转化率随时间的变化关 系。图 9(a)显示的是 110 和 125℃下预测得到的等 温固化数据与实验数据的对比,可以看出预测的结果 与实验结果比较吻合,但在反应后期预测值与实验值 出现一定的偏差,这主要是因为固化温度较低时,体 系反应到一定程度时便发生玻璃化转变,这样交联网 络的运动能力受到严重限制,反应进入扩散控制阶 段。图 9(b)显示的是在不同温度下预测得到的等温 固化转化率随时间的变化关系,可见随着反应温度的 增加,反应速率迅速增大,预计该树脂体系在 150℃ 下 3 min 或 140℃下 5.5 min 即可达到 90%转化率, 即可实现中温快速固化。

Fig.9 Comparison of experimental curing data and predicted ones at 110 and 125°C and the predicted isothermal curing data at different temperatures

2.3 拉伸性能

606 是航天材料及工艺研究所研制的可实现较低温度固化的环氧树脂。LTCEP 和 606 体系在室温下的力学性能如表 2 所示。可见 LTCEP 经 80℃固化后试样性能与再经 125℃后处理后试样的性能相近,进一步说明该体系可实现 80℃固化。后处理虽可增加该树脂体系的固化程度,但是对力学性能的提升有限。LTCEP 的固化温度低于 606 体系,但是力学性能与 606 体系的基本相当。

表 2 室温下 LTCEP 和 606 体系的拉伸性能

 Tab.2
 Tensile properties of LTCEP and 606 systems at room temperature

试样	固化条件	拉伸强度/ MPa	拉伸模量/ GPa	断裂伸长 率/%
LTCEP	80℃∕8h	51.34±11.78	4.29±0.14	1.23±0.34
LTCEP	80°C/8h + 125°C/2h	51.00±15.27	3.94±0.11	1.34 ± 0.50
606	100℃/2h+125℃/2h	47.42±6.42	4.01±0.15	1.22±0.20

3 结论

采用非等温 DSC 法研究了 LTCEP 的固化动力 学。首先采用 Gaussian 和 Lorentzian 分布函数的加 和模型对 DSC 曲线进行分峰处理,得到三组独立的 放热峰,然后分别对每一组峰对应的反应进行非等温 固化动力学分析。采用 Flynn-Wall-Ozawa 法计算不 同阶段反应的活化能随转化率的变化关系,发现活化 能随转化率的变化不明显,并得到这三个阶段的反应 平均活化能分别为 85.98、84.85 和 87.16 kJ/mol。接 下来采用 Málek 方法确定不同阶段的反应的动力学 机理函数,发现 Šesták-Berggren 模型可以很好地描 述这些反应。最后利用得到的动力学模型预测了树 脂体系在不同温度下的固化行为,发现在 110 和 125℃下利用非等温动力学模型预测的转化率随时间

-23 -

的变化关系与实验结果在前期较为吻合,在后期出现 一定偏差;更高温度下的预测表明该树脂体系在 150℃下3 min即可达到90%转化率,能实现中温快 速固化。拉伸测试结果表明LTCEP 经80℃固化后 其拉伸性能已与125℃后处理后试样的性能相近;该 树脂体系拉伸性能与606 体系的基本相当。

参考文献

[1] 益小苏.先进树脂基复合材料高性能化理论与实践 [M].北京;国防工业出版社,2011.

[2] 包建文,等.高效低成本复合材料及其制造技术[M]. 北京:国防工业出版社,2012.

[3] 陈祥宝,张宝艳,李斌太.低温固化高性能复合材料 技术[J].材料工程, 2011(1):7-12.

[4] 刘代军,陈亚莉.美国先进复合材料货运飞机研究进展[J]. 航空制造技术,2010(17):68-71.

[5] 杨新科,温杰.美国空军先进复合材料货运飞机首飞 [J].国际航空杂志,2009(7):60-62.

[6] HAWKES A. Hexcel at CAMX 2015[J]. Reinf. Plast., 2016,60(1):45-49.

[7] CIZMECIOGLU M, GUPTA A, FEDORS R F. Influence of cure conditions on glass transition temperature and density of an epoxy resin[J].J.Appl.Polym.Sci., 1986, 32(8):6177-6190.

[8] HODGES J, YATES B, DARBY M I, et al. Residual stresses and the optimum cure cycle for an epoxy resin[J].J.Mater.Sci., 1989, 24(6): 1984–1990.

[9] ZHAO S F,ZHANG G P,SUN R, et al. Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems [J]. Express Polym. Lett., 2014, 8 (2):95-106.

[10] MáLEK J.The kinetic analysis of non-isothermal data [J]. Thermochim. Acta, 1992, 200:257-269.

[11] SBIRRAZZUOLI N, VYAZOVKIN S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data [J].Thermochim.Acta,2002,388(1):289-298.

[12] ŠESTáK J, BERGGREN G.Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures [J]. Thermochim. Acta, 1971, 3(1):1-12.

[13] FLYNN J H, WALL L A.General treatment of the thermogravimetry of polymers [J]. J. Res. Natl. Bur. Stand. A Phys. Chem., 1966, 70A(6):487-523.

[14] OZAWA T.A new method of analyzing thermogravimetric data[J].Bull.Chem.,Soc.,Jpn.,1965,38:1881-1886.

[15] MáLEK J.A computer program for kinetic analysis of non-isothermal thermoanalytical data [J]. Thermochim. Acta, 1989,138(2):337-346.

[16] FLYNN J H.The 'temperature integral'—its use and abuse[J].Thermochim. Acta, 1997,300(1):83-92.

[17] SENUM G I, YANG R T. Rational approximations of the integral of the Arrhenius function [J].J.Therm Anal, 1977,11 (3):445-447.

郑重声明

尊敬的全体作者和读者朋友:您们好!

感谢您们多年来对《宇航材料工艺》的关心、支持和帮助!您们的需求是我们工作的动力和目标,编辑部 今后将继续努力为您们提供更好的平台进行学术交流,为航天事业的发展服务。

鉴于目前假冒网站太多,作者投稿时一定要注意识别《宇航材料工艺》期刊的官网,识别方式如下:

(1)《宇航材料工艺》期刊官网域名为 http://www.yhclgy.com,官网上均有编辑部各种业务的联系人和邮箱,一律不使用 QQ 号或在线咨询。

(2)《宇航材料工艺》期刊有独立的 DOI 号,并由该 DOI 号生成了二维码。在本刊官网和期刊封面上皆有 该二维码,您可以直接扫描该二维码登录官网。

(3)在稿件通过初审后需寄发保密审查证明和著作权转让书,编辑部收到后方送专家外审。本刊一律不 收取审稿费,版面费是收到录用通知后方缴纳,其他费用一概不收取。

作者在投稿时如发现与上述三方面不相符的均为假冒网站,千万注意识别,以免受骗上当。如有被骗情况 请速与本刊编辑部联系,编辑部将协同相关部门对假冒网站追究责任。特此声明!

《宇航材料工艺》编辑部联系方式: 单位地址:北京市丰台区南大红门路1号 通信地址:北京 9200 信箱 73 分箱 18 号,邮编:100076 联系电话:010-68383269;传真:010-68383237 网址:http://www.yhclgy.com

E-mail:703@ china.com