摘要
二氧化硅气凝胶具有低密度、高孔隙率、高比表面积、低导热性等特点,但存在强度低、韧性差等缺陷。在此基础上,柔性二氧化硅气凝胶通过改进传统二氧化硅气凝胶的制备工艺表现出了更优的力学性能与适用性。本文综述了国内外柔性二氧化硅气凝胶的最新研究进展,分析对比了不同类型气凝胶的性能参数;重点介绍了柔性二氧化硅气凝胶常用的制备方法,如前驱体改性法、聚合物改性法和纤维增强法。其中前驱体改性法通过对硅源种类的选择和组合,较容易实现气凝胶材料的微观结构与性能的设计,是目前制备柔性二氧化硅气凝胶的主要方法以及研究的热点内容。此外,总结了柔性二氧化硅气凝胶在保温隔热、油水分离、高效隔音领域的应用;同时对其发展前景进行了展望。
气凝胶是由胶体粒子或高聚物分子相互聚结构成纳米多孔网络结构,并在孔隙中充满气态分散介质的一种高分散固态材
1931年,美国Kistler教授以水玻璃为硅源首次制备出了SiO2气凝胶,标志着气凝胶研究的开
传统方法制备的SiO2气凝胶由刚性的硅氧键(Si—O—Si)连接组成,虽然SiO2气凝胶骨架内的颗粒强度大但颗粒间的连接较弱,在机械加工或者压缩过程中表现出较差的力学性

图1 SiO2气凝胶的制备工艺流程
Fig.1 The process routing of SiO2 aerogel
前驱体改性法是利用通式为RnSiXm(R代表烷基、芳基、乙烯基等;X代表卤素、烷氧基等;n≥1,m≤3)的有机硅氧烷作为前驱体从而使气凝胶获得柔性的方法。从微观结构来看,硅源中引入甲基、乙烯基、硫醇基等不可水解的柔性基团可显著改变气凝胶的孔结构和交联度。如以MTMS为硅源制备的气凝胶比TEOS衍生的气凝胶孔隙明显增大,具有开放的三维网络结构,如

图2 TEOS和MTMS的气凝胶样品微观结构的TEM图片
Fig.2 Transmission electron micrographs showing the microstructure of the TEOS and MTMS based aerogel samples
(a) TEOS (b) MTMS
目前,合成柔性SiO2气凝胶常用的硅源有甲基三甲氧基硅烷(MTMS)、甲基三乙氧基硅烷(MTES)、乙烯基三甲氧基硅烷(VTMS)、乙烯基三乙氧基硅烷(VTES)等单官能团前驱体,以及二甲基二甲氧基硅烷(DMDMS)、乙烯基甲基二甲氧基硅烷(VMDMS)、乙烯基二甲基甲氧基硅烷(VDMMS)等双官能团前驱

图3 不同配制比例制备的PVSQ气凝胶
Fig.3 PVSQ aerogels prepared in different proportions
采用桥联倍半硅氧烷作为硅源也可获得柔性气凝胶。桥连倍半硅氧烷的通式为(OR)3SiR′Si(OR)3,其中R′代表烯基、烷基、芳基或桥基等。不同的有机桥链段可存在不同的柔性、长度、几何结构以及官能团,使得气凝胶在性能调控上有着极大的灵活

图4 EBPMS和PMSQ气凝胶三点弯曲试验的应力应变曲线及网络结构
Fig.4 Stress strain curves obtained from three-point bending tests on EBPMS and PMSQ aerogels and the network structure
不同于单一前驱体法,选用多种硅源的复配先驱体法使得柔性SiO2气凝胶的制备工艺更加多元。此外,功能性硅源的加入还可赋予柔性氧化硅气凝胶多功能性,有利于扩大气凝胶的应用范围。如CHEN
聚合物交联制备柔性气凝胶是通过共聚、混合等将带有活性基团的聚合物引入到气凝胶材料骨架或孔隙中来制备气凝胶的方法。交联剂一方面可以与凝胶骨架之间形成共价键,使凝胶骨架结构更粗壮,强度更高;另一方面利用聚合物的高交联性与SiO2气凝胶骨架网络进行交联,可提高SiO2颗粒之间的连接性
作为交联剂的高分子聚合物与湿凝胶颗粒表面特定的基团发生反应形成新的化学键,并且以聚合物薄膜的形式涂覆在凝胶固体骨架的表面,起到加固增韧作用。制备过程中通常使用硅烷偶联剂在湿凝胶表面进行修饰,引入氨基、环氧基或者丙烯酸酯等活性基团,再采用聚合物单体对其进行浸泡,在催化剂的作用下聚合物进入凝胶内部发生聚合交联反
采用溶胶凝胶法制备的SiO2湿凝胶的内部以及表面还残留部分未反应羟基,异氰酸酯可与多元醇反应生成聚氨酯达到增韧骨架的作用。Leventis课题组对此进行了研
此外,对湿凝胶表面氨基化后可以与异氰酸酯反应生成聚脲,比用醇凝胶直接与异氰酸酯交联可获得更大的强度和柔性。CAPADONA

图5 二异氰酸酯交联APTES改性湿凝胶反应过程图
Fig.5 The reaction process of diisocyanate crosslinking APTES modified wet gel
目前,聚氨酯、环氧化物、聚丙烯酸酯、聚苯乙烯或聚脲等有机聚合物已被用于骨架颗粒间的交联和涂覆,显著改善了气凝胶的力学性能。然而,该方法的缺点是聚合物单体在凝胶中的扩散不均匀,且在多数情况下不可避免的增加了气凝胶的密度。
原位交联法是将聚合物引入溶胶中后使其均匀分布在凝胶网络骨架中。在这类气凝胶中,聚合物与SiO2网络骨架相互渗透却彼此独立,两者间不存共价键,只通过弱作用力相互连接,如范德华力、静电力、氢键等。
除了常规的聚合物,原位交联还可利用有机染料或生物分子与多孔溶胶-凝胶基质相结
注: 1)PVDMS-聚乙烯基甲基二甲氧基硅烷;VTMS-乙烯基三甲氧基硅烷; VMDMS-乙烯基甲基二甲氧基硅烷; VDMMS-乙烯基二甲基甲氧基硅烷; ATMS-烯丙基三甲氧基硅烷; GPTMS-(3-缩水甘油基氧丙基)三甲氧基硅烷; PE-聚醚。
近年来,一些研究者利用聚烷氧基硅烷取代有机硅烷单体,使得气凝胶在获得强度提升的同时还能保持良好的隔热性能。聚硅氧烷与传统前驱体结构相似,且可对侧基的比例和类型进行调控,易得到强柔性的聚合物气凝胶。其柔性源于较低的交联密度,较低浓度的硅烷浓度以及网络骨架中丰富的柔性有机基
纤维增强法是通过化学和机械混合的方式将纤维均匀分布在SiO2气凝胶骨架中,利用纤维的骨架支撑作用及对裂纹扩展的阻碍作用,改善复合气凝胶的力学性能。纤维复合不但能使SiO2气凝胶具有高强度的骨架结构,而且还能抑制SiO2胶体颗粒的聚积和生长,使凝胶结构更均
常规束状纤维呈单丝束状,具有抗拉、耐热及耐腐蚀等特点,主要类型包括玻璃纤维、硅酸铝棉、石英纤维等。通常将纤维加入SiO2溶胶中,待其凝胶后经过干燥得到复合材
预制件纤维通常由连续无机纤维通过化学黏结剂及物理机械作用制作成毡状预制
与普通纤维相比,纳米纤维结构尺寸较小且表面能高,能有效解决纤维/气凝胶复合材料的粉末脱离现象,用作SiO2气凝胶的增强相能获得更理想的增强效
除以上提到的纤维类型,生物质合成纤维也是有效改善气凝胶机械性能的优良材料。如ZHANG
一些碳材料如碳纳米管或石墨烯、氧化石墨烯等作为优良的纳米填料也可与SiO2气凝胶掺杂合成新型纳米复合材料,有效改善气凝胶的孔径、比表面积以及吸附性能。如石墨烯的各向同性多孔结构和增强效应,在与气凝胶复合后能保持较高机械强度且降低容重和表面积。DERVIN
柔性SiO2气凝胶不仅具有气凝胶所特有的纳米多孔结构、高比表面积和孔隙率等优异特性外,还具有较出色的力学性能,在航空航天、能源建筑、石油化工、节能环保、生物医学、新能源等领域拥有广泛的应用前景。
气凝胶材料在隔热方面所表现出的特殊性质引起了各领域的关注,而SiO2气凝胶的纳米多孔网络结构使之具有极低的固态热传导以及气态热传导,在隔热保温领域应用广泛。特别是柔性SiO2气凝胶的发展扩展了气凝胶在航空航天、管道设备、建筑等领域的应用。如美国Aspen公司在NASA、各军兵种以及民用等方面开展了研究,并且已经取得了多项重要的研究成果,其中包括高超声速飞行器蜂窝结构热防护系统、运载火箭燃料低温贮箱以及阀门管件保温系统、新型驱逐舰的船体结构防火墙隔热系统
石油在生产、存储、运输和使用过程中的泄露事件频繁发生,这不仅造成了严重的环境污染也会导致大量的能源损耗。因此,如何有效去除或回收泄漏的石油受到全世界的关注。SiO2气凝胶具有高比表面积和高孔隙率,且其孔结构具备开孔性和相互连通性等特点,是一种极具开发价值的吸附材料。但若要满足可重复吸油性,需要在油相吸附饱和后经挤压等方式将其快速的释放。因此,用于油水分离的气凝胶多表现为柔性、疏水性和亲油
SiO2气凝胶材料具有良好的隔音性能,可用作良好的声学延迟和高效隔音材料。FRANCESC
对于柔性SiO2气凝胶,理论上,为改善硅气凝胶的柔性、疏水性、强度等理化性质,需在SiO2主链中引入柔性基团,或者通过与聚合物、纤维复合来增强骨架结构,但这些方法在不同程度上增加了其热导率与密度,且制备过程繁琐复杂,有进一步优化的空间。对比溶胶-凝胶法形成的颗粒结构,基于亚稳相分解形成非颗粒网状结构近年来成为制备柔性SiO2气凝胶的新趋势。不同于传统的溶胶-凝胶过程,形成非颗粒网状结构能有效克服颗粒结构的缺陷,如不存在老化步骤,力学性能优异,密度显著降低等。然而,目前仍然缺乏纳米量级上有关SiO2前驱体的亚稳相分解过程的基础研究。为实现柔性SiO2气凝胶的更多工程应用,还需针对其合成机理和结构生长演变规律进行深入探究,以便实现柔性气凝胶的性能调控。此外,如何在保持气凝胶材料原有优异性能的同时,改善其韧性和强度、发展低成本、绿色环保的制备工艺仍是当前研究的关键。
参考文献
甘礼华,陈龙武.气凝胶[J].化学通报,1997,4(8): 21-27. [百度学术]
GAN L H, CHEN L W.Aerogel[J].Chemistry,1997,4(8):21-27. [百度学术]
KISTLER S S.Coherent expanded aerogels and jellies[J].Nature,1931,127:741. [百度学术]
冯坚.气凝胶高效隔热材料[M].北京:科学出版社,2016. [百度学术]
FENG J.Aerogel material for highly efficient thermal insulation[M].Beijing: Science Press,2016. [百度学术]
王妮,任洪波.不同硅源制备二氧化硅气凝胶的研究进展[J].材料导报,2014,28(1):42-45. [百度学术]
WANG N,REN H B.Investigation process of silica aerogels synthesized by different types of silica recourses[J].Materials Review,2014,28(1):42-45. [百度学术]
KARAMIKAMKAR S,NAGUIB H E,PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties,customized morphology, and multifunctionality: A review[J].Advances in Colloid and Interface Science,2020,276:102101. [百度学术]
HEGDE N D,VENKATESWARA RAO A.Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol-gel process[J].Journal of Materials Science,2007,42(16):6965-6971. [百度学术]
TEMNIKOV M N,KONONEVICH Y N,MESHKOV I B, et al.Simple and fast method for producing flexible superhydrophobic aerogels by direct formation of thiol-ene networks in SiO2[J].Polymer,2018,138:255-266. [百度学术]
VENKATESWARA RAO A,HEGDE N D,SHEWALE P M. Imperviousness of the hydrophobic silica aerogels against various solvents and acids[J].Applied Surface Science, 2007, 253(9):4137-4141. [百度学术]
赵志扬,孔勇,江幸,等.具有可逆形变的弹性气凝胶研究进展[J].高分子材料科学与工程,2020,36(5): 175-184. [百度学术]
ZHAO Z Y,KONG Y,JIANG X,et al.Research progress of elastic aerogels with reversible deformation[J].Polymer Materials Science & Engineering,2020,36(5):175-184. [百度学术]
RAO A,BHAGAT S D,HIRASHIMA H,et al. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor[J].Journal of Colloid and Interface Science, 2006,300(1):279-285. [百度学术]
SHIMIZU T,KANAMORI K,MAENO A,et al. Transparent,highly insulating polyethyl-and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying[J].Chemistry of Materials,2016,28(19):6860-6868. [百度学术]
NIU Z,HE X,HUANG T,et al.A facile preparation of transparent methyltriethoxysilane based silica xerogel monoliths at ambient pressure drying[J].Microporous and Mesoporous Materials,2019,286:98-104. [百度学术]
陈当家.柔性桥联型硅氧烷气凝胶的常压制备及性能调控[D].北京科技大学,2019. [百度学术]
CHEN D J.Ambient pressure preparation and performance regulation of flexible bridged siloxane aerogels[D].University of Science and Technology Beijing,2019. [百度学术]
SHIMIZU T,KANAMORI K,MAENO A,et al. Transparent ethylene-bridged polymethylsiloxane aerogels and xerogels with improved bending flexibility[J].Langmuir,2016, 32(50):13427-13434. [百度学术]
SHIMIZU T,KANAMORI K,MAENO A,et al. Transparent ethenylene-bridged polymethylsiloxane aerogels: mechanical flexibility and strength and availability for addition reaction[J].Langmuir,2017,33(18):4543-4550. [百度学术]
CHEN D,GAO H,JIN Z,et al.Vacuum-dried synthesis of low-density hydrophobic monolithic bridged silsesquioxane aerogels for oil/water separation: effects of acid catalyst and its excellent flexibility[J].ACS Applied Nano Materials,2018,1(2):933-939. [百度学术]
GAO H,BO L,LIU P,et al.Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials[J].Solar Energy Materials and Solar Cells,2019,201:110122. [百度学术]
WU X,ZHONG K,DING J,et al.Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique[J].Journal of Non-Crystalline Solids,2020,530: 119826. [百度学术]
HAYASE G,KANAMORI K, FUKUCHI M,et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water[J]. Angewandte Chemie International Edition,2013,52(7):1986-1989. [百度学术]
HAYASE G,KANAMORI K,HASEGAWA G,et al. A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility[J].Angewandte Chemie International Edition,2013,52(41):10788-10791. [百度学术]
YANG Z,YU H,LI X,et al.Hyperelastic and hydrophobic silica aerogels with enhanced compressive strength by using VTES/MTMS as precursors[J].Journal of Non-Crystalline Solids,2019,525:119677. [百度学术]
WANG Z,DAI Z,WU J,et al.Vacuum-dried robust bridged silsesquioxane aerogels[J].Advanced Materials,2013,25(32):4494-4497. [百度学术]
MATIAS T,VARINO C,DE SOUSA H C,et al.Novel flexible, hybrid aerogels with vinyl- and methyltrimethoxysilane in the underlying silica structure[J].Journal of Materials Science,2016,51(14):6781-6792. [百度学术]
FAN H,WU Z,XU Q,et al.Flexible, amine-modified silica aerogel with enhanced carbon dioxide capture performance[J].Journal of Materials Science,2016,23(1):131-137. [百度学术]
廖云丹.纤维增强SiO2气凝胶隔热复合材料的可控制备及性能优化研究[D].广州大学,2012. [百度学术]
LIAO Y D.Controllable preparation and performance optimization of fiber-reinforced SiO2[D].Scientific Dissertation of Guangzhou University, 2012. [百度学术]
马海楠. 聚合物改性二氧化硅气凝胶的制备及性能研究[D]. 大连理工大学, 2018. [百度学术]
MA H N.Preparation and properties of polymer modified silica aerogels[D].Dalian University of Technology,2018. [百度学术]
LEVENTIS N,SOTIRIOU-LEVENTIS C,ZHANG G, et al.Nanoengineering strong silica aerogels[J].Nano Letters, 2002,2(9):957-960. [百度学术]
ZHANG G,DASS A,RAWASHDEH A M,et al. Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization[J].Journal of Non-Crystalline Solids,2004, 350:152-164. [百度学术]
CHO J,JANG H G,KIM S Y,et al.Flexible and coatable insulating silica aerogel/polyurethane composites via soft segment control[J].Composites Science and Technology,2019, 171:244-251. [百度学术]
CAPADONA L A,MEADOR M A B,ALUNNI A, et al.Flexible,low-density polymer crosslinked silica aerogels[J]. Polymer,2006,47(16):5754-5761. [百度学术]
NGUYEN B N,MEADOR M A B,MEDORO A,et al. Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate[J].ACS Applied Materials & Interfaces,2010,2(5):1430-1443. [百度学术]
李帅强.聚甲基倍半硅氧烷气凝胶及其复合物的制备与性能研究[D].西南科技大学,2018. [百度学术]
LI Suaiqiang.Preparation and property study of polymethylsilsesquioxane and their composites[D].Southwest University of Science and Technology,2018. [百度学术]
MALEKI H,MONTES S, HAYATI-ROODBARI N, et al.Compressible, thermally insulating,and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure-an approach towards 3D printing of aerogels[J].ACS Applied Materials & Interfaces,2018,10(26):22718-22730. [百度学术]
WANG Q,YU H,ZHANG Z,et al.One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J].Journal of Colloid and Interface Science,2020,573:62-70. [百度学术]
MAHADIK D B,JUNG H,HAN W,et al.Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process[J].Composites Science and Technology,2017,147:45-51. [百度学术]
REZAEI S,JALALI A,ZOLALI A M,et al.Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure[J].Journal of Colloid and Interface Science,2019,548:206-216. [百度学术]
JIANG L,KATO K,MAYUMI K,et al.One-pot synthesis and characterization of polyrotaxane silica hybrid aerogel[J].ACS Macro Letters,2017,6(3):281-286. [百度学术]
WANG L,GUO R,REN J,et al.Preparation of superhydrophobic and flexible polysiloxane aerogel[J]. Ceramics International,2020,46(8):10362-10369. [百度学术]
WANG L,FENG J,JIANG Y,et al.Polyvinylmethyldimethoxysilane reinforced methyltrimethoxysilane based silica aerogels for thermal insulation with super-high specific surface area[J].Materials Letters,2019,256:126644. [百度学术]
ZU G,SHIMIZU T,KANAMORI K,et al. Transparent,superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying[J].Acs Nano,2018,12(1):521-532. [百度学术]
ZU G,KANAMORI K,MAENO A,et al. Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors[J].Angewandte Chemie International Edition,2018,57(31):9722-9727. [百度学术]
ZU G,KANAMORI K,SHIMIZU T,et al.Versatile double-cross-linking approach to transparent, machinable, supercompressible,highly bendable aerogel thermal superinsulators[J].Chemistry of Materials,2018,30(8):2759-2770. [百度学术]
REZAEI S,ZOLALI A M,JALALI A,et al.Novel and simple design of nanostructured,super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor[J].Journal of Colloid and Interface Science,2020, 561:890-901. [百度学术]
王宝民,韩瑜,宋凯.SiO2气凝胶增强增韧方法研究进展[J].材料导报,2011,25(23):55-58. [百度学术]
WANG B M,HAN Y,SONG K.Methods for improving strength and toughness of silica aerogel[J].Materials Review, 2011,25(23):55-58. [百度学术]
邵再东,张颖,程璇.新型力学性能增强二氧化硅气凝胶块体隔热材料[J].化学进展,2014,26(8):1329-1338. [百度学术]
SHAO Z D,ZHANG Y,CHENG X.Advances in mechanically enhanced silica aerogel monoliths as thermal insulating materials[J].Progress in Chemistry,2014,26(08): 1329-1338. [百度学术]
LI X,WANG Q, LI H,et al.Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite[J].Journal of Sol-Gel Science and Technology, 2013,67(3):646-653. [百度学术]
LIAO Y,WU H,DING Y,et al.Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites[J].Journal of Sol-Gel Science and Technology, 2012,63(3):445-456. [百度学术]
LI Z,GONG L,CHENG X,et al.Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior[J].Materials & Design,2016,99:349-355. [百度学术]
梁玉莹,吴会军,游秀华,等.纤维改善SiO2气凝胶的力学和隔热性能研究进展[J].硅酸盐通报,2017,36(04): 1216-1222. [百度学术]
LINAG Y Y, WU H J, YOU X H, et al. Advances in effect of fiber species on improving mechanical and thermal insulation properties of silica aerogel[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(04): 1216-1222. [百度学术]
JIANG Y,FENG J,FENG J.Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity[J].Journal of Sol-Gel Science and Technology,2017,83(1): 64-71. [百度学术]
贾伟韬,张光磊,李彦芳,等. 纤维复合SiO2气凝胶的研究进展[J]. 硅酸盐通报, 2019, 38(07): 2118-2124. [百度学术]
JIA W T, ZHANG G L, LI Y F, et al. Research progress of the fiber composite SiO2 aerogel[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(07): 2118-2124. [百度学术]
KIM Y,KIM H S,JO S M,et al.Thermally insulating, fire-retardant, smokeless and flexible polyvinylidene fluoride nanofibers filled with silica aerogels[J].Chemical Engineering Journal,2018,351:473-481. [百度学术]
隋超.纤维素掺杂SiO2与Al2O3柔性气凝胶的制备及性能表征[D].哈尔滨工业大学,2015. [百度学术]
SUI C.Preparation and property characterization of cellulose hybrid SiO2 and Al2O3 flexible aerogels[D].Harbin Institute of Technology, 2015. [百度学术]
LI L,YALCIN B,NGUYEN B N,et al.Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization[J].ACS Applied Materials & Interfaces, 2009,1(11):2491-2501. [百度学术]
MEADOR M A B,VIVOD S L,MCCORKLE L,et al. Reinforcing polymer cross-linked aerogels with carbon nanofibers[J].Journal of Materials Chemistry,2008,18(16):1843. [百度学术]
ZHANG R,AN Z,ZHAO Y,et al.Nanofibers reinforced silica aerogel composites having flexibility and ultra‐low thermal conductivity[J].International Journal of Applied Ceramic Technology,2020,17(3):1531-1539. [百度学术]
赵洪凯,邵凯,刘威,等.纳米级增强体复合硅气凝胶的研究进展[J].无机盐工业,2020,52(04):7-11. [百度学术]
ZHAO H K,SHAO K,LIU W,et al.Research progress of nano-sized reinforced silica aerogel composites[J].Inorganic Chemicals Industry,2020,52(04):7-11. [百度学术]
ZHANG J,CHENG Y,TEBYETEKERWA M,et al. “Stiff-Soft” binary synergistic aerogels with superflexibility and high thermal insulation performance[J]. Advanced Functional Materials, 2019, 29(15): 1806407. [百度学术]
ZHAO S,EMERY O,WOHLHAUSER Aet al. Merging flexibility with superinsulation:Machinable, nanofibrous pullulan-silica aerogel composites[J].Materials & Design,2018,160:294-302. [百度学术]
DERVIN S,LANG Y,PEROVA T,et al.Graphene oxide reinforced high surface area silica aerogels[J].Journal of Non-Crystalline Solids,2017,465:31-38. [百度学术]
MI H,JING X,HUANG H,et al.Superhydrophobic graphene/cellulose/silica aerogel with hierarchical structure as superabsorbers for high efficiency selective oil absorption and recovery[J].Industrial & Engineering Chemistry Research, 2018,57(5):1745-1755. [百度学术]
ZU G, KANAMORI K,WANG X,et al.Superelastic triple-network polyorganosiloxane-based aerogels as transparent thermal superinsulators and efficient separators[J].Chemistry of Materials,2020,32(4):1595-1604. [百度学术]
张娜,张玉军,于延军,等.SiO2气凝胶制备方法及隔热性能的研究进展[J].陶瓷,2006(1):24-26. [百度学术]
ZHANG N,ZHANG Y J,YU Y J,et al.Progress on the research of preparation and thermal insulation properties of silica aerogels[J].Ceramics,2006(1):24-26. [百度学术]
石俊龙,刘刚,高宏宇.气凝胶在节能建筑中的应用[J].北方建筑,2019,4(6): 61-64. [百度学术]
SHI J L,LIU G,GAO H Y.Application of aerogel in energy-saving buildings[J].Northern Architecture,2019,4(6):61-64. [百度学术]
魏巍.新型无机气凝胶的制备及其吸附/光催化性能研究[D].江苏大学, 2014. [百度学术]
WEI W,Synthesis of novel inorganic aerogels for adsorption/photocatalytic performance application [D].Jiangsu University, 2014. [百度学术]
STANDEKER S,NOVAK Z, KNEZ Z.Adsorption of toxic organic compounds from water with hydrophobic silica aerogels[J].Journal of Colloid and Interface Science,2007,310(2):362-368. [百度学术]
GURAV J L,GURAV J L,RAO A V,et al.Ambient pressure dried TEOS-based silica aerogels: good absorbents of organic liquids[J].Journal of Materials Science,2010,45(2): 503-510. [百度学术]
WANG J,WANG H.Facile synthesis of flexible mesoporous aerogel with superhydrophobicity for efficient removal of layered and emulsified oil from water[J].Journal of Colloid and Interface Science,2018,530:372-382. [百度学术]
YU Y,WU X,FANG J.Superhydrophobic and superoleophilic “sponge-like” aerogels for oil/water separation[J]. Journal of Materials Science,2015,50(15):5115-5124. [百度学术]
MERLI F,ANDERSON A M,CARROLL M K,et al. Acoustic measurements on monolithic aerogel samples and application of the selected solutions to standard window systems[J]. Applied Acoustics, 2018, 142: 123-131. [百度学术]
LI X,YANG Z,LI K,et al.A flexible silica aerogel with good thermal and acoustic insulation prepared via water solvent system[J].Journal of Sol-Gel Science and Technology, 2019,92(3):652-661. [百度学术]