摘要
高熵陶瓷是一类新兴的陶瓷材料,因其独特的结构和性能,近年来受到广泛的关注。本文从高熵陶瓷的定义出发,通过概述固相反应法、前驱体热解法以及放电等离子烧结法等高熵陶瓷制备方法,介绍了合成高熵陶瓷的工艺流程;并且详细阐述了近年来高熵氧化物、高熵碳化物、高熵二硼化物等体系的高熵陶瓷的研究成果,对不同体系的高熵陶瓷的特点和应用前景进行了归纳和总结。
近年来,高熵材料(High-entropy materials)因具有特殊的性质而备受关注。这类材料通常是由多个组元以等比例或近等比例的方式相互固溶而形成,具有不同于传统材料的结构特征和性能特点,有望在航空航天、新能源电子器件、核能应用等领域得到广泛的应用。最早关于高熵材料的报道是叶均蔚教

图1 高熵陶瓷研究论文(数据截止至2020年8月)
Fig. 1 The published papers on high-entropy ceramics (at the end of August 2020)
高熵陶瓷是由多个组元(一般大于5)以等比例或近等比例相互固溶而形成的一类无机非金属材料。熵是热力学中描述系统混乱程度的物理量,系统因其内部构型的无序所产生的熵叫作构型熵。根据玻尔兹曼熵函数关系式,在理想情况中,系统的构型熵和其内部粒子混乱度的定性关系:
(1) |
式中,表示系统的构型熵,R=8.314 J/(mol·K),是指摩尔气体常数,n表示组元数,是指第i个组分的所占的摩尔分数。可以看出,材料的构型熵主要与其所含组分的数目以及各组分所占的摩尔分数有关,即材料的组成成分越多,各组分所占的摩尔数越接近,材料的构型熵越大。根据材料构型熵的大小可将材料分为低熵(Sconf<0.69R)、中熵(0.69R≤Sconf≤1.61R)和高熵(Sconf>1.61R)材
高熵材料普遍具有四个核心效应。
(1)高熵效应:多组元按等摩尔或近等摩尔的比例进行固溶时,高的构型熵有利于单相固溶体的形成。
(2)严重的晶格畸变效应:由于高熵材料是由多种组元相互固溶而形成的,而每个组元的原子尺寸各不相同,这就使得高熵材料内部晶格产生严重畸变,原子尺寸相差越大,畸变越严重。严重的晶格畸变对材料的影响主要包括降低了材料X-ray衍射峰的强度,降低热导率和电导率,增加硬度。
(3)迟滞扩散效应:高熵合金中的扩散是非常缓慢
(4)性能的“鸡尾酒”效应:即通过多组元协同作用可能使得材料的性能出现意料之外的结果。
正是因为高熵陶瓷具有这些核心效应,使其具有比其组成成分更加优异的性能,才使得材料学界对高熵陶瓷的兴趣逐渐增大,导致高熵陶瓷的研究也呈爆炸式的增长。
最早的高熵陶瓷是利用固相反应法制备
为了解决这些问题,借鉴前驱体制备陶瓷的方法,人们开发出了一种由前驱体出发,在相对温和的条件下合成高熵陶瓷的方法,即通过溶胶-凝胶法、反向共沉淀等方法,实现原料的原子级别混合,从而降低合成高熵材料所需要的能垒,随后再在相对较低的温度进行充分焙烧以去除多余的交联剂、沉淀剂或溶剂,从而实现高熵陶瓷的低温合
通过固相反应或前驱体热解法制备的高熵陶瓷粉体,再烧结时通常具有较低的致密度,这可能与其内部迟滞扩散效应有关。为了获得致密的高熵陶瓷,人们将放电等离子烧结法引入到高熵陶瓷的制备
除此之外,近年来其他新型合成高熵陶瓷的方法如水热
高熵陶瓷的性能具有很大的不确定性,主要原因为:(1)高熵陶瓷因其组成成分较多,各组元之间并没有明显的主次之分,各组元间性能差异较大,这就给从组成成分角度预测材料性能增大了难度;(2)组成高熵陶瓷的各个成分的晶体结构并不相同,形成的高熵陶瓷却是一个具有确切晶体结构的材料,这就使得从结构角度来也难以预测高熵陶瓷的性能。基于上述原因,高熵陶瓷的性能具有不确定性。研究高熵陶瓷的成分、组织和性能之间的关系,就显得尤为必要且颇具挑战性。
高熵氧化物是目前高熵陶瓷体系中研究最多的一种,因其对制备过程中的环境要求低,所以其主要的制备方法以高温焙烧法和前驱体热解法为主。

图2 不同高熵氧化物的研究对比
Fig.2 The comparison of different high-entropy oxides
岩盐型高熵氧化物体系主要是以(Co,Cu,Mg,Ni,Zn)O为代表以及在其基础上通过其他元素掺杂(如Li、Ga、K、F等)改性得到的改性(Co,Cu,Mg,Ni,Zn)O。在众多高熵陶瓷体系中,岩盐型体系由于其发现最早且合成过程简单,易于形成等特点成为目前研究最多的体系。

图3 高熵(Co,Cu,Mg,Ni,Zn)O的合成和转化
Fig.3 Synthesis and transformation of high-entropy (Co,Cu,Mg,Ni,Zn)O
如同所有高熵材料,岩盐型高熵氧化物也具有严重的晶格畸
特殊的晶体结构赋予了岩盐型高熵氧化物特殊的电化学性能。SARKAR等

图4 循环稳定性对比
Fig.4 The comparison of cycle stability
除此之外,由于岩盐型高熵氧化物均匀分散的特殊结构和较好的热稳定性及化学稳定性,使得它在催化领域也有不错的应用前景。CHEN等
萤石型高熵氧化物(Ce,Gd,La,Nd,Pr,Sm,Y)O,(Ce,La,Nd,Sm,Y)O,(Ce,La,Pr,Sm,Y)O以及(Gd,La,Nd,Pr,Sm,Y)O最早报道于2017年,是由DJENADIC等
与高熵岩盐型氧化物类似,高熵萤石型氧化物在高温催化剂载体方面的应用也值得关注。XU等

图5 Pd负载的高熵萤石型氧化物
Fig.5 The Pd-loaded high-entropy fluorite oxides
除了上述几种高熵氧化物之外,最近几年其他高熵氧化物陆续出现,如高熵锆酸盐(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O

图6 高熵氧化物和典型的热障涂层材料
Fig.6 The high-entropy oxides and typical thermal barrier coatings
高熵陶瓷虽然发展较晚,但是发展迅速,除了上述提及的氧化物高熵陶瓷以外,还有很多高熵非氧化物因其特殊的结构、性能,以及潜在的应用价值而引起人们广泛的关注。在高熵非氧化物中较为常见的是高熵碳化物和高熵二硼化物,除此之外还有高熵硅化物、高熵氮化物、高熵氟化物等。
目前高熵碳化物组成元素多为ⅣB、ⅤB以及ⅥB元素如Ti、Zr、Hf、V、Nb、Ta、Mo和W等,其晶体结构多为岩盐型结构,其晶体结构示意图见

图7 高熵碳化物结构和性能分析
Fig.7 The structure and performance analysis of high-entropy carbides
高熵碳化物的制备方法以放电等离子烧结和真空热压烧结为主。按原料来分,反应过程主要有从多种金属碳化物出发的固溶过
高熵碳化物普遍具有较高的硬度和弹性模量,其硬度和弹性模量均高于根据混合定律(RoM,Rule of Mixture)计算的理论值。晶格节点上元素分布的无序性可能是硬度增加的一个原因,即原子尺寸失配导致晶格畸变增加了材料的硬
与高熵氧化物类似,高熵碳化物也具有相对较低的热导率。DUSZA等
目前对高熵二硼化物的研究主要集中在ⅣB、ⅤB以及ⅥB的元素上,如Ti、Zr、Hf、Nb、Ta、Mo和Cr,所形成的高熵硼化物基本为层状六方晶体结构,包含交替的二维硼网和二维金属阳离子层,其晶体结构示意图见

图8 高熵金属二硼化物结构与抗氧化性能
Fig.8 The structure and oxidation resistance of high-entropy diborides
考虑到金属硼化物普遍具有较高的硬度,高熵二硼化物的硬度被广泛研
考虑到二硼化物一般具有较差的断裂韧性,所以ZHANG等
过渡族金属硼化物的抗氧化性较差,极易与空气中的氧结合形成易挥发的B-O化合物使得材料失
除了较为常见的高熵碳化物和高熵二硼化物以外,还有许多非氧化物高熵陶瓷如高熵氮化物、高熵硅化物等,他们在高熵陶瓷家族同样占据一席之地。
JIN等
此外,2019年3月QI

图9 高熵二硅化物结构与性能对比
Fig.9 The crystal structure and properties of high-entropy disilicides
高熵陶瓷是一系列具有高构型熵、高构型无序度的陶瓷材料,它的出现给材料设计提供了一种新的思路,即通过调控材料的组成成分,来实现对材料内部构型熵的调控,进而实现材料的结构以及性能的设计。未来高熵陶瓷的发展方向可能有以下四个部分:
(1)高通量计算和高通量实验设计用以筛选出更多体系的高熵陶瓷;
(2)对已知高熵陶瓷的性能加以探索,丰富高熵陶瓷的应用范围,模拟计算用以解释高熵陶瓷异乎寻常的性能的根本原因;
(3)高熵陶瓷从目前由五种及以上组元等比例固溶体向着组元数目更开阔,如三元、四元或六元及更多元的方向发展,各组元的比例也从等比例向着近等比例发展,实现高熵陶瓷内部缺陷的调控,进一步探究缺陷对高熵陶瓷性能的影响;
(4)高熵陶瓷与其他材料复合,进一步拓展其应用领域,取长补短,充分发挥其优势。
参考文献
YEH J W,CHEN S K,LIN S J,et al.Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303. [百度学术]
GLUDOVATZ B,HOHENWARTER A,CATOOR D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153-1158. [百度学术]
DENG Y,TASAN C C,PRADEEP K G,et al.Design of a twinning-induced plasticity high entropy alloy[J].Acta Materialia,2015,94:124-133. [百度学术]
ZHANG Z,MAO M,WANG J,et al.Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi[J].Nature Communications,2015,6(1):1-6. [百度学术]
SCHUH B,MENDEZ-MARTIN F,VÖLKER B,et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation[J].Acta Materialia,2015,96:258-268. [百度学术]
ROST C M,SACHET E,BORMAN T,et al.Entropy-stabilized oxides[J].Nature Communications,2015,6(1):1-8. [百度学术]
GILD J,ZHANG Y,HARRINGTON T,et al.High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J].Scientific Reports,2016(6):37946. [百度学术]
MAYRHOFER P H,KIRNBAUER A,ERTELTHALER P,et al.High-entropy ceramic thin films; A case study on transition metal diborides[J].Scripta Materialia, 2018,149:93-97. [百度学术]
JIN T,SANG X,UNOCIC R R,et al.Mechanochemical‐assisted synthesis of high‐entropy metal nitride via a soft urea strategy[J].Advanced Materials,2018,30(23):1707512. [百度学术]
SARKER P,HARRINGTON T,TOHER C,et al.High-entropy high-hardness metal carbides discovered by entropy descriptors[J].Nature Communications,2018,9(1):1-10. [百度学术]
CASTLE E,CSANÁDI T,GRASSO S,et al. Processing and properties of high-entropy ultra-high temperature carbides[J].Scientific Reports,2018,8(1):1-12. [百度学术]
FENG L,FAHRENHOLTZ W G,HILMAS G E,et al.Synthesis of single-phase high-entropy carbide powders[J].Scripta Materialia,2019,162:90-93. [百度学术]
HARRINGTON T J,GILD J,SARKER P,et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J].Acta Materialia,2019,166:271-280. [百度学术]
TSAI M H,YEH J W,High-entropy alloys: a critical review[J].Materials Research Letters,2014,2(3):107-123. [百度学术]
ZHANG F,WU Y,LOU H,et al.Polymorphism in a high-entropy alloy[J].Nature Communications,2017,8(1):1-7. [百度学术]
YE Y F,WANG Q,LU J,et al.High-entropy alloy: challenges and prospects[J].Materials Today,2016,19(6):349-362. [百度学术]
QIU N,CHEN H,YANG Z,et al.A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O with superior lithium storage performance[J]. Journal of Alloys and Compounds,2019,777:767-774. [百度学术]
OSENCIAT N,BÉRARDAN D,DRAGOE D,et al. Charge compensation mechanisms in Li-substituted high‐entropy oxides and influence on Li superionic conductivity[J]. Journal of the American Ceramic Society,2019,102(10):6156-6162. [百度学术]
GU J,ZOU J,SUN S K,et al.Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via borocarbothermal reduction approach[J]. Science China Materials,2019,62(12):1898-1909. [百度学术]
WEN T,LIU H,YE B,et al.High-entropy alumino-silicides: a novel class of high-entropy ceramics[J].Science China Materials,2020,63(2):300-306. [百度学术]
MAO A,XIANG H Z,ZHANG Z G,et al.Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder[J].Journal of Magnetism and Magnetic Materials,2019, 484:245-252. [百度学术]
DONG Y,REN K, LU Y,et al.High-entropy environmental barrier coating for the ceramic matrix composites[J]. Journal of the European Ceramic Society,2019,39(7):2574-2579. [百度学术]
GILD J,SAMIEE M,BRAUN J L,et al.High-entropy fluorite oxides[J].Journal of the European Ceramic Society, 2018,38(10):3578-3584. [百度学术]
ZHANG Y,GUO W M,JIANG Z B,et al.Dense high-entropy boride ceramics with ultra-high hardness[J].Scripta Materialia,2019,164:135-139. [百度学术]
ZHAO Z,CHEN H,XIANG H,et al.(Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7:A defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3[J]. Journal of Materials Science & Technology,2020,39:167-172 [百度学术]
SARKAR A,BREITUNG B, HAHN H, High entropy oxides: The role of entropy, enthalpy and synergy[J].Scripta Materialia,2020,187:43-48. [百度学术]
BIESUZ M,SPIRIDIGLIOZZI L,DELL’AGLI G, et al. Synthesis and sintering of (Mg,Co,Ni,Cu,Zn) O entropy-stabilized oxides obtained by wet chemical methods[J].Journal of Materials Science,2018,53(11):8074-8085. [百度学术]
LEI Z,LIU X,LI R,et al.Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering[J].Scripta Materialia,2018,146:340-343. [百度学术]
OKEJIRI F,ZHANG Z H, LIU J X,et al.Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based Method[J]. Chem.Sus.Chemm.,2020,13(1):111-115. [百度学术]
WANG K W,MA B S,LI T,et al.Fabrication of high-entropy perovskite oxide by reactive flash sintering[J].Ceramics International,2020,46:18358-18361. [百度学术]
DRAGOE N,BÉRARDAN D,Order emerging from disorder[J].Science,2019,366(6465):573-574. [百度学术]
BRAUN J L,ROST C M,LIM M,et al.Charge‐induced disorder controls the thermal conductivity of entropy‐stabilized oxides[J].Advanced Materials,2018,30(51):1805004. [百度学术]
BÉRARDAN D,FRANGER S,MEENA A,et al. Room temperature lithium superionic conductivity in high entropy oxides[J].Journal of Materials Chemistry A,2016,4(24):9536-9541. [百度学术]
SARKAR A,VELASCO L,WANG D,et al.High entropy oxides for reversible energy storage[J].Nature Communications,2018,9(1):1-9. [百度学术]
WANG Q,SARKAR A,WANG D,et al.Multi-anionic and-cationic compounds:New high entropy materials for advanced Li-ion batteries[J].Energy & Environmental Science, 2019,12(8):2433-2442. [百度学术]
HAO C,JIE F,ZHANG P F,et al.Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability[J].Journal of Materials Chemistry A, 2018,6(24):11129-11131. [百度学术]
DJENADIC R,SARKAR A,CLEMENS O,et al. Multicomponent equiatomic rare earth oxides[J].Materials Research Letters,2017,5(2):102-109. [百度学术]
SARKAR A,LOHO C,VELASCO L,et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency[J].Dalton transactions,2017,46(36):12167-12176. [百度学术]
XU H D,ZHANG Z H, LIU J X,et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports[J].Nature Communications, 2020, 11(1):1-9. [百度学术]
ZHAO Z,XIANG H, DAI F Z,et al.(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7:A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate[J].Journal of Materials Science & Technology,2019,35(11):2647-2651. [百度学术]
WRIGHT A J,WANG Q,KO S T,et al.Size disorder as a descriptor for predicting reduced thermal conductivity in medium-and high-entropy pyrochlore oxides[J].Scripta Materialia,2020,181:76-81. [百度学术]
ZHAO Z,CHEN H,XIANG H,et al.(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3[J].Journal of Materials Science & Technology,2019,35(12):2892-2896. [百度学术]
ZHAO Z,XIANG H,DAI F Z,et al.(Ti,Zr,Hf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity[J].Journal of Materials Science & Technology,2019,35(10):2227-2231. [百度学术]
REN X M,TIAN Z L,ZHANG J,et al.Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material[J].Scripta Materialia,2019,168:47-50. [百度学术]
CHEN H,XIANG H M,DAI F Z,et al.High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion[J].Journal of Materials Science & Technology,2019,36:134-139. [百度学术]
YE B L,NING S S,LIU D,et al.One‐step synthesis of coral‐like high‐entropy metal carbide powders[J].Journal of the American Ceramic Society,2019,102(10):6372-6378. [百度学术]
FENG L,FAHRENHOLTZ W G,HILMAS G E, Low‐temperature sintering of single-phase,high-entropy carbide ceramics[J].Journal of the American Ceramic Society,2019, 102(12):7217-7224. [百度学术]
ZHANG Y,JIANG Z B,SUN S K,et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction[J].Journal of the European Ceramic Society,2019,39(13):3920-3924. [百度学术]
WEI X F,LIU J X,LI F,et al.High entropy carbide ceramics from different starting materials[J].Journal of the European Ceramic Society,2019,39(10):2989-2994. [百度学术]
ZHANG H,AKHTAR F,Processing and characterization of refractory quaternary and quinary high-entropy carbide composite[J].Entropy,2019,21(5):474. [百度学术]
YE B,WEN T,NGUYEN M C,et al.First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25) C high-entropy ceramics[J].Acta Materialia,2019,170:15-23. [百度学术]
YE B,WEN T,HUANG K H,et al.First-principles study,fabrication,and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic[J].Journal of the American Ceramic Society,2019,102(7):4344-4352. [百度学术]
PENG C,GAO X,WANG M,et al.Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity[J].Applied Physics Letters,2019,114(1):011905. [百度学术]
HOSSAIN M,BORMAN T,KUMAR A,et al.Carbon Stoichiometry and Mechanical Properties of High Entropy Carbide[J].Acta Materialia Inc.,2020. [百度学术]
TALLARITA G,LICHERI R,GARRONI S,et al. Novel processing route for the fabrication of bulk high-entropy metal diborides[J].Scripta Materialia,2019,158:100-104. [百度学术]
GILD J,KAUFMANN K,VECCHIO K,et al.Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics[J].Scripta Materialia,2019,170:106-110. [百度学术]
BACKMAN L,GILD J,LUO J,et al.Part I: Theoretical predictions of preferential oxidation in refractory high entropy materials[J].Acta Materialia,2020,197:20-27. [百度学术]
LIU D,WEN T,YE B,et al.Synthesis of superfine high-entropy metal diboride powders[J].Scripta Materialia, 2019, 167:110-114. [百度学术]
DEHDASHTI M K,FAHRENHOLTZ W,HILMAS G, Effects of transition metals on the oxidation behavior of ZrB2 ceramics[J].Corrosion Science,2015,91:224-231. [百度学术]
QIN Y,LIU J X,LI F,et al.A high entropy silicide by reactive spark plasma sintering[J].Journal of Advanced Ceramics,2019,8(1):148-152. [百度学术]
GILD J,BRAUN J,KAUFMANN K,et al.A high-entropy silicide:(Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2[J].Journal of Materiomics,2019,5(3):337-343. [百度学术]