TC4钛合金惯性摩擦焊接过程的数值模拟
作者:
中图分类号:

TG453+.9


Numerical Simulation of Inertial Friction Welding of TC4 Titanium
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于ABAQUS有限元分析软件,建立了TC4钛合金的惯性摩擦焊(IFW)焊接过程的二维轴对称模型,通过确立Johnson-Cook损伤模型以及ALE技术对TC4钛合金的惯性摩擦焊焊接过程进行了热力耦合分析,发现TC4惯性摩擦焊在0.2 s内温度升高到200~300℃,0.5 s左右温度升高到1 100~1 200℃之后温度升高趋于平缓,到达峰值后温度缓慢下降,焊接完成。轴向缩短量在0.6 s内非常小,温度达1 100~1 200℃(0.6~1.2 s)轴向缩短量增长十分快并基本达到峰值,1.2~1.4 s由于粘结作用温度不再升高轴向缩短量增加缓慢,1.4 s后焊接基本完成轴向缩短量不再增加。初始阶段轴向应力基本没有变化,随着温度升高(0.2~0.5 s)压应力在中心区域增大,0.5~1.2 s内边缘形成拉应力,中心区域应力集中愈发明显,1.2 s后拉应力明显增加。而径向应力随着温度的升高中心应力明显高于外侧并使金属向两侧流动。这就可以得出飞边形成主要是因为高温、轴向应力以及径向应力共同复杂作用而形成的结果。模拟结果基本与实际相符,对提高惯性摩擦焊焊接质量提供了重要的参考作用。

    Abstract:

    Based on ABAQUS finite element analysis software, a two-dimensional axisymmetric model of TC4 titanium alloy inertial friction welding (IFW) process was established.The thermal coupling analysis of TC4 titanium alloy by inertial friction welding was carried out by establishing Johnson-Cook damage model and ALE technique.It was found that TC4 inertial friction welding increased to about 200℃ to 300℃ in 0.2 s, up to 1 100 to 1 200℃ in 0.5 s and then reached to a flatten.After reaching the peak, the temperature droped slowly and the welding were completed. The axial shortening is very small within 0.6 s, and it increases very fast and reaches a peak substantially at temperatures of 1 100 to 1 200℃ (0.6 to 1.2 s),from 1.2 to 1.4 s axial shortening increases slowly due to cementation.The temperature no longer increases after 1.4 s, and the welding is completed and the axial shortening is no longer increased. The initial stage of axial stress basically unchanged, with increasing temperature (0.2 to 0.5 s) compressive stress increases in the central region. The stress concentration in the center is more obvious, after 1.2 s tensile stress increases significantly. The radial stress increases with temperature,center stress was significantly higher than the outside and the metal flow to both sides. This leads to the result that the flash formation is mainly due to the complicated effect of high temperature, axial stress and radial stress. The simulation results are basically consistent with the actual results, which can provide an important reference for improving the welding quality of inertial friction welding.

    参考文献
    [1] 孟卫如,牛锐峰,王士元,等.TC4钛合金惯性摩擦焊接头温度场分析[J].焊接学报,2004,25(4):111-115
    [2] 王锴,刘金和,郭德伦,等.GH4169高温合金惯性摩擦焊的有限元模拟[J].焊接,2006,35(23):84-90
    [3] 王月,姬书得,金延野,等.惯性摩擦焊过程轴向界面作用力的演变规律[J].热加工工艺,2015,44(15):175-180
    [4] 卜文德,刘合金,贾中振.Inconel 718合金惯性摩擦焊温度场三维有限元数值模拟[J].焊接,2009(4):39-43
    [5] 张立文,齐少安,刘承东.GH4169高温合金惯性摩擦焊接温度场的数值模拟[J].机械工程学报,2002(增刊),38学报,2004,25(4):111-115
    [6] 李建光,施琪,曹结东.Johnson-Cook本构方程的参数标定[J].兰州理工大学学报,2012,38(2):164-167
    [7] 林莉,支旭东,范锋,等.Q235B钢Johnson-Cook模型参数确定[J].振动与冲击,2014,33(9):153-172
    [8] 鲁世红,何宁.TC4钛合金动态本构模型与高速切削有限元模拟[J].兵器材料科学与工程,2008,32(1):5-9
    [9] 杨扬,曾毅,汪冰峰.基于Johnson-Cook模型的TC16钛合金动态本构关系[J].中国有色金属学报,2008,18(3):505-510
    [10] 蒋建东,高洁,赵颖娣,等.基于ALE有限元仿真的土壤切削震动减阻[J].农业工程学报,2012,28(5):33-38
    [11] 张全忠,张立文,张新国.GH4169合金摩擦焊接过程的数值模拟研究[D].大连:大连理工大学,2007
    [12] DUFFIN F D.Friction welding of mild steel:the effect of varying the value of deceleration[J]. Metal Construction and British Welding,1973(4):125-132
    [13] 杜随更,段立宇,吴诗惇,等.摩擦焊接过程中能量转换与相对角速度分布的研究[J].西北工业大学学报,1993,11(增刊):23-28
    [14] 杜随更,贺运佳,俞新荣.LY12-T2摩擦焊接头中次生摩擦面形成机制研究[J].西北工业大学学报,1993,11(增刊):62-68
    [15] AVIZUR B,WU R,TALBERT S.Criterion for the prevention of core frature during extrusion of bitemal rods[J].J.Eng.Ind.,1982,104(3):293-30
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李潍,李慎华,贾成阁,毕海峰,关英俊. TC4钛合金惯性摩擦焊接过程的数值模拟[J].宇航材料工艺,2018,48(3):27-32.

复制
分享
文章指标
  • 点击次数:2401
  • 下载次数: 3521
  • HTML阅读次数: 2411
  • 引用次数: 0
历史
  • 收稿日期:2017-09-25
  • 在线发布日期: 2018-06-04
文章二维码