Φ200 mm 固体火箭发动机复合壳体成型工艺

王纪霞 马俊 胡大宁 张崇耿 张新航

(1 西安长峰机电研究所,西安 710065)

(2 陆军驻天水地区军事代表室,天水 740000)

文 摘 以混合环氧树脂 E-51 和 TDE-85 为基体树脂、复合芳香胺为固化剂,采用砂芯模、缠绕等成型 工艺,制作的 Φ200 mm 复合壳体,特性系数 PV/W 为 32.3 km。水压爆破试验结果表明,所设计的碳纤维复合 材料发动机壳体满足设计性能指标要求。

关键词 复合壳体,基体树脂性能,成型工艺

Molding Process of Composite Case of Solid Rocket Motor of Φ 200 mm

Wang Jixia¹ Ma Jun¹ Hu Daning² Zhang Chonggeng¹ Zhang Xinhang¹

 $(1\quad Xi' an \ Changfeng \ Research \ Institute \ of \ Mechanism \ and \ Electricity, Xi' an \quad 710065)$

(2 Army Tianshui Area Delegacy Bureau, Tianshui 740000)

Abstract Composite chamber case of Φ 200 mm solid-rocket motor was made by using the two kinds of epoxy resins E-51 and TDE-85, as well as molding process of hermetic and heat-resistance material and molding process of filament winding composites were adopted. The *PV/W* values of the finished Φ 200 mm case are 32.3 km. The hydrostatic burst test of 36 MPa show that the performances of the filament winding case of solid-rocket motor meet the design requirements.

Key words Composite case, Properties of resin, Molding process

0 引言

由于玻璃纤维和芳纶纤维的韧性好、可缠绕性好 等优点,国内外研究较早、较多,技术比较成熟,应用 很多^[1]。后来由于碳纤维具有突出的比强度、比模 量及其他优良性能,用它来代替玻璃纤维等材料已成 为发动机课题的一个发展方向^[2]。为满足高速高加 速高性能发动机高质量比的要求,需要研制高特性系 数的碳纤维复合壳体,并要求复合壳体能承受大的轴 向和横向过载。"十五"期间西安航天复合材料研究 所突破大长径高压强比复合壳体封头补强、全复合裙 连接以及全复合裙成型工艺等关键技术。

本文针对细长径比复合壳体基体树脂性能,复合 壳体密封防热结构材料成型工艺、砂芯模成型工艺、 缠绕成型、补强方式等基本问题进行了讨论。

1 实验

1.1 原材料、试验仪器和设备

原材料:E-51 环氧树脂,无锡树脂厂;TDE-85

环氧树脂,天津津东化工厂;两种稀释剂以及 T-700 碳纤维等。

试验仪器和设备:TA 系列热分析仪,美国 TA 公司;NDJ-1旋转黏度计,上海方瑞仪器有限公司;万能材料试验机,深圳新三思设备有限公司; 4FW500X2500数控缠绕机,哈尔滨玻璃钢研究所研制;水压设备。

1.2 试验方法

采用旋转黏度计测试不同时间段树脂的黏度值。

浇注体拉伸、压缩、弯曲、剪切、冲击性能分别按 GB/T2568—81、 GB/T2569—81、 GB/T2570—81、 GB/T1461—88、GB/T2571—81 测试。强力环拉伸、 剪切性能分别按 GB1458—88 测试、GB1461—88 测 试。

马丁耐热温度按 GB1035—70 测试。玻璃化温 度按 ASTM D4065—90 测试。

2 结果与讨论

作者简介: 王纪霞,1983年出生,工程师,主要从事固体火箭发动机材料和工艺研究工作。E-mail:wangjixia@gmail.com

收稿日期:2012-04-18;修回日期:2012-10-15

2.1 复合壳体基体树脂性能

2.1.1 基体树脂的黏度

湿法成型工艺对树脂体系黏度要求在一定范围 内,树脂体系的黏度是湿法缠绕成型的重要工艺参数 之一^[3],直接影响复合材料的力学性能。

以混合 E-51 和 TDE-85 树脂为基体树脂、复合 芳香胺为固化剂,并配以稀释剂,对配方体系中的树 脂黏度进行测试^[4]。表1为在35℃下树脂配方体系 黏度随时间的变化数据。

从表1可以看出以混合环氧树脂 E-51 树脂和 TDE-85 树脂为基体树脂的配方体系经过9h 后黏度 为3.40 Pa·s,可以满足碳纤维湿法缠绕工艺要求。

表1 35℃ 树脂配方体系黏度随时间的变化数据

Tab. 1 Viscosity of resin system with different time at 35°C

贮存时间/h	黏度/Pa•s	贮存时间/h	黏度/Pa•s	
0	1.48	5	2.16	
1	1.52	6	2.38	
2	1.54	7	2.82	
3	1.58	8	3.40	
4	1.74			

2.1.2 基体树脂浇注体的性能

为了得到性能优良的树脂基体,通过对树脂基体 配方进行优化,得到的基体树脂的浇注体性能见表 2。

表 2 树脂配方体系浇铸体性能

Гab. 2	Properties	of	casting	with	certain	formula

密度/	拉伸强	拉伸模	延伸	弯曲强	弯曲模	冲击强	$T_{\rm g}/$	马丁耐热	剪切强	压缩强	压缩模
$g \cdot cm^{-3}$	度/MPa	量/GPa	率/%	度/MPa	量/GPa	度/kJ·m ⁻²	°C	温度/℃	度/MPa	度/MPa	量/GPa
1.25	88.47	3.65	3.60	149.1	3.71	1.93	109.2	110	21.35	125.4	1.81

2.1.3 湿法缠绕用树脂配方的 NOL 环性能

通过测量 NOL 环拉伸和剪切强度,取三次试验 的平均值,分别为1.98 GPa、63 MPa。说明碳纤维与 树脂配方体系的界面粘接性能优良,具有较强的传递 应力的能力,而且湿法缠绕对纤维的磨损较小,纤维 强度能得到较好的发挥。

2.2 砂芯模结构与成型工艺研究

2.2.1 砂芯模结构

将 Φ200 mm 缠绕芯模采用1件前封头砂模段、3 件筒段砂模段、1件后封头砂模段相结合的方式,为确 保砂模段组装时,各砂模段有较高的同轴度,在砂模 段中预埋固砂轴套,并对其精度提出较高要求,为确 保砂芯顺利组装、拆卸并实现回转运动芯轴上采用止 扣和键联接的方法。

2.2.2 砂芯模成型工艺

砂芯模成型工艺路线:材料及成型模具预处理→ 芯砂混制→芯砂填充紧实→砂模段烘干→砂模段脱 模→砂模→砂模段端面加工→合格砂模段→砂模段 组装→砂模筒段加工→合格砂芯模。

2.3 绝热层成型粘贴工艺

采用绝热层的纤维缠绕壳体已广泛用作火箭发动机壳体,绝热层在壳体中不仅具有防热作用还起密封作用,以保证壳体在内压试验时不渗漏,它对纤维 缠绕发动机壳体的综合性能 PV/W 值有着不可忽视 的影响。

绝热层模压使用的柔性绝热层材料,经过塑炼、

混炼,最后压碾成平整光洁的生片。然后按绝热层需要的尺寸进行裁取压制好的生片,再把裁取生片放在 干净的操作台上。

方案1手工贴片:按要求裁好生片直接包裹在砂 芯模上,然后用胶黏剂将搭缝涂胶粘合;

方案2模压成型:设计出合适的模具将绝热层按 段模压成型,再在一定的温度下硫化成熟片,根据设 计方案把绝热层套接到砂芯模上,用胶黏剂将对接缝 粘合起来。

通过两种方案进行对比,发现用方案1绝热层成 型后,芯模表面不平整,质量难以保证,更无法保证缠 绕成型后的质量,在生片芯模上缠绕第一个纵向时, 张紧的胶带紧紧地压在生片芯模上并逐渐将绝热层 与砂芯模间的空气往后赶,在第一个纵向快要缠完 时,就会在绝热层内形成很大的气泡,气泡会破坏纱 带有规律的缠绕线型。解决的办法是用刀割开生片 放出气体,然后将多余的绝热层剪掉,再把刀缝粘好, 结果生片芯模表面受到破坏,影响纱带的排列,甚至 在接缝处造成纱带的架空和滑移,使后面的纱带无法 有规律的排布。有时在高张力纱带的挤压下壳体在 固化过程中生片会渗透到外边,结果使壳体性能降 低。方案2绝热层成型后,硫化好的绝热层强度大, 表面有足够的硬度,缠绕在熟片芯模上时,绝热层不 会发生塑性流动,故施加的缠绕张力不会自动释放, 缠绕张力稳定,能达到预期施加张力的目的(图1)。

图 1 方案 2 成型后的绝热层 Fig. 1 Insulation of the second project

2.4 缠绕成型工艺

2.4.1 缠绕工艺流程

 Φ 200 mm 复合壳体制作工艺流程见图 2。

Fig. 2 Making process sketch of composite case with wet winding

2.4.2 大长细比壳体封头补强工艺技术

由于大长细比壳体在金属接头边缘,金属接头的 刚度远大于复合材料壳体的刚度,使得复合材料壳体 在该处的约束刚度发生突变较明显,从而造成该处复 合材料壳体的应力、应变水平较高,需要在该处进行 补强;而且由于大长细比开口附近的纤维易于堆积和 架空等缺陷加之极孔金属件区域的应力集中,形成该 区域的应力薄弱区。碳纤维/环氧复合材料的刚性比 玻璃纤维和芳纶纤维复合材料大,对极孔金属件边缘 的不连续性更敏感。采取壳体完成一个纵环向循环 后,再缠绕一层纵向剪掉中间段留下封头段,然后完 成剩余的缠绕层。这样保证了加强层在缠绕层的两 端,加强层和缠绕层的粘接性和整体完好性^[5-6]。

2.4.3 复合壳体成型工艺参数及实验结果

壳体成型主要工艺参数见表 3。对所缠绕的复合 壳体进行水压试验,结果在 36 MPa 时,筒身段发生爆 破,两端极孔完整,碳纤维壳体水压爆破形貌图见图 3。试验结果说明表3所选工艺参数是合理的。

表 3 复合壳体成型主要工艺参数及水压爆破压强 Tab. 3 Winding process parameters of case

				F			
纵、环向	应力平	缠绕	切点	缠绕张	含胶	带宽	PV
循环数	衡常数	角/(°)	数	力/N	量/wt%	/mm	W ^{/ KIII}
3环、3纵	0.75	40	3	80 ~ 70	32 ~ 34	5	32

图 3 碳纤维壳体水压爆破形貌图 Fig. 3 Hydrostatic burst sketch of composite chamber case

3 结论

以混合环氧树脂 E-51 和 TDE-85 为基体树脂、 复合芳香胺为固化剂,采用砂芯模、缠绕等成型工艺, 工艺满足大细长比复合壳体的成型需要,制作的 Φ200 mm 复合壳体的 PV/W 为 32.3 km,并成功通过 了水压爆破 36 MPa 的试验考核。

参考文献

[1] 张兴宏,赵珂,陈刚.碳纤维缠绕壳体的成形与工艺 [J].航天工艺,2001(1):16-20

[2] 刘炳禹,王晓洁,韩建平,等.碳纤维复合材料锥形壳 体成形技术初探[J].宇航材料工艺,2000,30(4):26-29

[3] 邓杰,刘建超.复合材料用中温固化环氧树脂体系的 研究[J].化学与黏合,2004(6):314-316

[4] 王晓洁,张炜,刘炳禹.碳纤维湿法缠绕基体配方及成型研究[J].固体火箭技术,2001,24(1):60-63

[5] 王郭峰,张炜,王晓洁,等.碳纤维环氧固体火箭发动 机壳体补强现状[J].纤维复合材料,2008(3):35-38

[6] 王东. 某缠绕壳体补强工艺研究[J]. 航天制造技术, 2007(2):36-37

(编辑 吴坚)

— 78 —