玄武岩纤维/酚醛树脂复合材料界面结合机理

张 莉 申世杰 刘亚兰

(北京林业大学材料科学与技术学院,北京 100083)

文 摘 分别用浓度为0.8wt%和1.0wt%的KH550硅烷偶联剂处理玄武岩纤维布,并制作成玄武岩纤维增强酚醛树脂(PF-BFRP)。经过力学检测和SEM的分析结果表明:0.8wt%组复合材料力学性能略高于1.0%组, 且该组纤维表面的树脂附着层较厚且分布均匀,单根纤维表面的树脂附着量较多。根据FTIR结果的分析,推测 出复合界面新形成的化学键为C-N-C和C-O-Si。树脂中苯酚与纤维表面的氨基、硅醇基分别形成了C-N-C键、C-O-Si键。XPS测试证实了0.8wt%组C-O-Si键的峰面积比大于1.0wt%组,说明0.8wt%组复合 材料具有更好的界面性能。

关键词 玄武岩纤维,酚醛树脂,复合材料,界面

Bonding Mechanism of Basalt Fiber Reinforced Phenolic Resin

Zhang Li Shen Shijie Liu Yalan

(College of Material Science and Technology, Beijing Forestry University, Beijing 100083)

Abstract Basalt fiber was treated with concentration of 0.8wt% and 1.0wt% of KH550 silane coupling agent respectively, and basalt fiber-reinforced phenolic resin (basalt fiber reinforced phenolic resin, BFR-phenolic) was made. After mechanical testing and SEM analysis, we found that the mechanical properties of 0.8wt% group was slightly higher than 1.0wt% group. also the resin layer of 0.8wt% group is thick and evenly distributed, the resin attached to the surface of a single fiber is more than others; FTIR test had determined the formation of the new chemical bonds may be C—N—C, C—O—Si; formation of C—N—C bond between phenol and amino on the composite interface, and formation of C—O—Si bond between phenol and silanol. XPS tests confirmed that the 0.8wt% group formed more C—O—Si bonds, which made it better composite interface.

Key words Basalt fiber, Phenolic resin, Composite, Interface

0 引言

玄武岩纤维(BF)以其优异的性能在复合材料各个 领域有着非常广阔的应用^[1]。复合界面的粘结状态是 确保复合材料获得良好的力学性能最重要的因素^[2]。

使用硅烷偶联剂处理玻璃纤维(GF),其表面的 Si—O 键以及其固有的羟基和树脂的羟基形成氢键,氢 键的形成增强了不同纤维之间的结合力。硅烷水解成 有机硅醇,并与纤维表面以氢键或共价键形式结合,形 成网络。而 BF 的化学组成与玻璃纤维相似,主要成分 都是硅化物^[3]。用硅烷偶联剂处理纤维后,可以使二者 之间获得更好的结合,而且纤维增强树脂基复合材料也 能获得更好的力学性能和理化性能。

本文从偶联剂的作用机理和界面理论入手,从微观的角度寻找影响 BFRP 复合材料的复合界面上树脂与纤维之间结合的化学基团,进而推测二者之间形成的化学键、影响因素。

1 实验

1.1 材料

(1)BF布:辽宁省营口市建筑材料研究所,纤维
 平均直径≤8 μm,含水率≤0.5%,软化温度≥
 750℃,吸湿性≤10%,酸性系数≥1。

(2) 酚醛树脂:热固性酚醛树脂 616[#]:北京玻璃
钢复合材料研究所。主要指标参数:游离酚 13.3%;
固含量 66.86%;固化温度为 180~220℃;180℃下凝
胶时间为 114 s;黏度 125 MPa·s。

(3) 偶联剂: 硅烷偶联剂 KH550, 上海耀华化工厂。

(4)聚四氟乙烯薄膜:厚0.5 mm,北京市大兴华 塑料制品有限公司。

1.2 制作步骤

PF-BFRP 复合材料制作主要包括四个步骤:首 先是对玄武岩纤维表面进行热处理和偶联剂处理;其 次是调制胶黏剂,并在纤维表面均匀施胶;再等胶黏

收稿日期:2011-09-19

基金项目:国家十一五科技支撑专题(2006BAD18B0705)

作者简介:张莉,1984年出生,硕士研究生,主要从事纤维增强树脂复合材料的研究。E-mail:dkx_1026@163.com

剂初步固化后热压;最后将压制好纤维板脱模裁边并 裁制所需试件。

D 组和 E 组分别为偶联剂处理浓度为 0.8wt% 和 1.0wt% 的 PF-BFRP 复合材料。

1.3 实验设备

(1)QD液压热压机,上海人造板机器厂。

(2)Instron-5565 电子万能试验机,英国 Instron。
(3)PHI Quantera SXM 型 X 射线光电子能谱仪:
日本 ULVAC-PHI 公司。

(4) Nicolet Nexus 670 型傅里叶衰减 ATR 红外光 谱仪:美国 Nicolet 公司。

(5)扫描电镜:德国蔡司 ZEISS 公司,型号:SU-PRA[™] 40/40VP。

1.4 检测标准

复合材料的拉伸性能、弯曲性能以及层间剪切强 度的测试,分别根据 GB/T1449—2005、GB/T1447— 2005 和 JIKS7078—1991 进行检测。

2 结果与讨论

2.1 力学性能

D、E两组复合材料力学性能结果见表1。

表 1 BFRP 的力学性能 Tab. 1 Mechanical properties of BFRP

BFRP 	弯曲强度 /MPa	弯曲模量 /CPa	拉伸强度 /MPa	拉伸模量 /GPa	ILSS /MPa
 D组	235.95	17.33	304.96	17.70	239.44
E 组	230.82	19.36	312.95	17.43	226.53

由表1可以看出,E组的弯曲模量比D组略高 2.03 GPa,可以看出偶联剂处理浓度的改变对PF-BFRP复合材料的弯曲性能影响不大,0.8wt%的偶联 剂处理浓度足以使复合材料获得优良的弯曲性能;E 组的拉伸强度为312.95 MPa,比D组的高8 MPa,两 组试件的拉伸模量相差很小,对比分析可以看出,偶 联剂浓度的差别对复合材料的拉伸性能影响不大;D

组的层间剪切强度为239.44 MPa,比E组高13 MPa, 层间剪切强度是可以直接反应复合材料结合界面状况的参数,从对比分析中可以看出,0.8wt%处理浓度时,复合材料的层间剪切强度更好一点,因此,此时复合材料的结合界面粘结状况更好。

2.2 SEM 检测

图 1 是两组 BFRP 复合材料弯曲试件表面的 500 倍(左图)、1000 倍(右图)扫描电镜图像,可以看出, D 组表面的树脂附着层较厚且分布均匀,单根纤维表 面的树脂附着量较多;而 E 组试样表面的胶层较薄, 树脂没有形成完好的附着层,单根纤维表面的树脂附 着量较少。

(b) E 组试件

图 1 D、E两组弯曲试件断面的 SEM 图像

Fig. 1 SEM micrographs of surfaces of bending strength test specimens of D and E

2.3 FTIR 分析

图 2 为 D 组、E 组 BFRP 试样的 FTIR 谱图,可以 看出在 4 000 ~ 400 cm⁻¹的吸收峰比较简单,峰形相 似,都是在 877、1 474、2 638、2 922、3 737 cm⁻¹处有明 显的吸收峰。

图 2 D 组和 E 组 PF-BFRP 复合材料的 FTIR 谱图

Fig. 2 FTIR spectra of PF-BFRP of D and E

从图 2(a)可以看出,416 cm⁻¹处有一个尖吸收峰,可能为 C—N—C 弯曲振动吸收,1 474、2 922 cm⁻¹处的

吸收峰是同一基团长链—CH2两种振动产生的吸收峰。1 504、1 654 cm⁻¹处吸收峰表明有苯环的存在,其

峰形是由苯环内 C==C 骨架振动引起。2 456、2 638 cm⁻¹处吸收峰在 2 700~2 250 cm⁻¹,可能为胺盐类化 合物中NH⁺伸缩振动吸收,在3357 cm⁻¹处的吸收峰及 其附近的弱吸收峰是由 C-NH-C 中的 N-H 吸收, 这也说明了 2 400~2 700 cm⁻¹的吸收峰确实归属于 NH⁺伸缩振动。3 652~4 000 cm⁻¹存在一大批弱吸收 峰,3 652、3 737 cm⁻¹处是两个相对较强的峰形,可以查 出3652 cm⁻¹处吸收峰是0—H伸缩振动吸收,考虑到 0—H 振动形式的不同也会产生其他的 3 600 cm⁻¹以 上的吸收峰。由以上分析中可以看出,D组的 PF-BFRP 复合材料复合界面主要含有苯环、羟基、长链 的—CH,、C—N—C、N—H、Si—O—C、Si—C 等官能 团。而Si—C、长链—CH,是纤维表面的主要官能团, 而酚醛树脂结构中有苯环、羟基以及—CH,等官能 团,因此C--N--C、Si-O--C应该就是BF与树脂胶 合后新形成的化学键。

图 2(b)可以看出,E 组 PF-BFRP 复合材料试样在 416、877、1 474、2 457、2 639、3 675、3 737 cm⁻¹处具有和 D 组试样相似的吸收峰,因此这些吸收峰对应的官能团也 应和 D 组一样。416 cm⁻¹处为 C—N—C 弯曲振动吸收, 877 cm⁻¹处为 Si—O—C 伸缩振动,1 474 cm⁻¹处的吸收 峰是长链—CH,吸收,2457、2639 cm⁻¹处吸收峰为胺盐 类化合物中 NH⁺伸缩振动吸收,3 675、3 737 cm⁻¹处以及 3 600 cm⁻¹以上的弱吸收峰都是 O—H 伸缩振动吸收。 748 cm⁻¹处的吸收峰形尖强度较大,应为苯环上有四个 或五个邻氢的吸收。在1600~2000 cm⁻¹之间的波长范 围内只有两个比较弱得吸收峰,这说明1616、1762 cm⁻¹ 处的吸收峰为苯环吸收。

综合以上两幅谱图的分析可知,D、E 组试样中新形 成的化学键为Si-O-C、C-N-C。考虑到BF表面的 结构特征和树脂的结构,纤维与树脂的复合界面可能发 生了—NH,与树脂中的胶粘性官能团—OH 发生反应生 成C--N--C,纤维表面的硅醇基与苯酚发生反应生产 Si—O—C,因而产生纤维与树脂之间良好的结合。

2.4 XPS 分析

图 3 为 D、E 两组 PF-BFRP 复合材料的 XPS 宽 谱图,可以看出 D、E 组复合材料表面的 C、O、N、F 元 素的含量较多,另外还有少量的 Na、Si。表 2 为两组 复合材料表面五种主要元素的组成比例,可以看出 C 在界面中占有很大的比重。

表 2 PF-BFRP 复合界面元素组成 Tab. 2 Elemental surface composition of **PF-BFRP** determined by XPS

PF-	界面元素组成/wt%					
BFRP	C1s	N1s	01 s	F1s	Si2p	
D 组	72.45	1.94	19.81	3.21	2.60	
E 组	71.93	2.69	17.83	3.79	3.75	

图 3 D、E 组 PF-BFRP 复合材料的 XPS 宽谱

Fig. 3 Survery spectra of PF-BFRP of D and E

2.4.1 C 元素的分析

将 PF-BFRP 复合材料的 C 元素窄谱进行分峰,可 以得到表3C元素窄谱分峰后各种官能团的面积比和 结合能分析数据,图4是D、E组PF-BFRP复合材料 C1s 窄谱的分峰,所得的峰主要有两个 C1 和 C2。

表 3 PF-BFRP 复合材料的 C1s XPS 分析数据 Tab. 3 XPS analysis date of C1s on PF-BFRP

PF-	峰面积		面积比 /%		结合能 /eV	
BFRP	C1	C2	C1	C2	C1	C2
D组	63.39	1680.81	3.63	96.37	283.53	284.73
E 组	146.36	1510.26	8.83	91.17	282.81	284.84

C1s Narrow Spectra of PF-BFRP composite of D and E

Fig. 4

图 4 中 D 组复合材料的两个峰 C1 和 C2 的结合 能分别为 283.53、284.73 eV,面积比分别为 3.63%、 96.37%。,根据 C1 的结合能大小和 FTIR 测试分析 结果,可以推测出其化学结构可能为 C—N,而 C2 的 结构可能为 C—OR(C—O—Si)。可以看出 D 组复 合材料的 C2 峰面积比 E 组多 5.2%,也就是说 D 组

复合材料复合界面的 C—O—Si 的数量更多。

2.4.2 O 元素的分析

将 PF-BFRP 复合材料的 O 元素窄谱进行分峰, 可以得到图 5 和表4 O 元素窄谱分峰后各种官能团 的面积比和结合能数据。可以看到 D、E 两组有两个 峰 O1、O2。

Fig. 5 O1s narrow spectra of PF-BFRP composites of D and E

表 4 PF-BFRP 复合材料的 O1s XPS 分析数据 Tab. 4 XPS analysis data of O1s on PF-BFRP

PF-	面积比 /%		结合	结合能 /eV		
BFRP	01	02	01	02		
D 组	18.89	81.11	531.37	532.57		
E 组	36.54	63.46	531.00	532.43		

图 5 D 组复合材料中,O1 的可能官能团为 C—O— H,O2 所代表的为 C—O—Si。E 组复合材料中 O2 峰面 积比减少了 17.65%,C—O—Si 数量减少。树脂结构中 的羟基与纤维表面的硅醇基结合产生 C—O—Si,说明 D 组复合材料中的 BF 与树脂之间的结合更好。

从纤维表面的 C 元素和 O 元素窄谱分析可以看 出,D 组复合材料,即偶联剂处理浓度为 0.8wt% 时, 纤维与树脂之间的胶合状况更好。FTIR 测试分析看 出,D、E 组 PF-BFRP 复合材料中 BF 与酚醛树脂之 间可能形成了两种结合方式:苯酚与氨基形成的 C— N—C 键以及苯酚与硅醇基形成的 C—O—Si 键。

此外,在本研究的前期实验过程中,Yalan Liu 等^[4]人分别使用不同含量的 KH550 处理 BF 布,并对 处理后的纤维布进行 FTIR 和 XPS 分析,结果表明偶 联剂处理浓度为 0.8wt%时,纤维具有最少的 O/C 比、 最少的 C—O 键数量,最大的 Si—O—Si 峰面积比;说 明纤维表面吸附的 KH-550 的量最大,处理效果最好。

3 结论

(1)D 组和 E 组的弯曲强度相差不大,E 组的弯 曲模量比 D 组略高,E 组的拉伸强度比 D 组的多 8 MPa,两组试件的拉伸模量相差很小,对比分析可以 看出,偶联剂浓度的差别对复合材料的拉伸性能影响 不大;D 组的层间剪切强度比 E 组高,说明 0.8wt%

宇航材料工艺 http://www.yhclgy.com 2012 年 第3 期

处理浓度时,复合材料的层间剪切强度更好。

(2)D 组表面的树脂附着层较厚且分布均匀,单 根纤维表面的树脂附着量较多;而 E 组试样表面的 胶层较薄,树脂没有形成完好的附着层,单根纤维表 面的树脂附着量较少。

(3)Si—C 是纤维表面的主要官能团,另外还应 有长链的伯胺以及羟基等官能团。酚醛树脂是由苯 酚和甲醛缩聚而成,其结构中主要含有苯环、羟基以 及—CH₂等官能团。可推测二者复合后,Si—O—C 可能为新产生化学键。D、E 组的 PF-BFRP 复合材 料复合界面主要含有苯环、羟基、长链的—CH₂、C— N—C、N—H、Si—O—C、Si—C 等官能团。Si—C、长 链—CH₂是纤维表面的主要官能团,而酚醛树脂结构 中有苯环、羟基以及—CH₂等官能团,因此 C—N—C、 Si—O—C 应该就是 BF 与树脂胶合后新形成的化学 键。考虑到 BF 表面的结构特征和树脂的结构,纤维 与树脂的复合界面可能发生了—NH₂与树脂中的胶 黏性官能团—OH 发生反应生成 C—N—C,纤维表面 的硅醇基与苯酚发生反应生产 Si—O—C,因而产生 纤维与树脂之间良好的结合。

(4)从纤维表面的 C 和 O 元素窄谱分析可以看 出,D 组复合材料具有更好的复合界面,树脂与纤维 间的结合更好。即偶联剂处理浓度为 0.8wt%,纤维 与树脂之间的胶合状况更好。

(5) FTIR 测试分析看出, D、E 组 PF-BFRP 复合 材料中 BF 与酚醛树脂之间可能形成了两种结合方 式:苯酚与氨基形成的 C-N-C 键以及苯酚与硅醇 基形成的 C-O-Si 键。