新型多元铌合金的高温氧化行为

李 \mathbf{P}^1 贾中华¹ 许谅亮²

(1 航天材料及工艺研究所,北京 100076)(2 中南大学材料学院,长沙 410083)

文 摘 研究了 Nb - 15Ti - 11A1和 Nb - 15Ti - 11A1 - 10Si两种多元铌合金在 1 100和 1 300 高温下的 氧化行为,建立了合金高温氧化动力学模型。结果表明:粉末冶金方法制备的铌合金微观组织细小,大大降低 了氧的短路扩散;合金中的钛降低了氧在基体中的固溶度并降低了氧的扩散速率;合金中的硅在高温时形成熔 融态的 SD2可有效地抑制 Nb2O5的生长,从而保证了氧化膜表面均匀平整。

关键词 多元铌合金,高温氧化,动力学模型

Oxidation Behavior of New Multi-Phase Nb-Based Albys at High Temperature

 $L i Dan^{1}$ J ia Zhonghua¹ Xu L iangliang²

(1 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

(2 Material School Central-South University, Changsha 410083)

Abstract The oxidation behavior of Nb - 15Ti - 11A1 and Nb - 15Ti - 11A1 - 10Si alloys was studied in air atmosphere at 1 100 and 1 300 , and the dynamical model of oxidation for these alloys was obtained. It is shown that the microscopic structure of Nb-based alloy made by powder metallurgy can reduce oxygen short-circuit diffusion, element Ti in the alloys can reduce solid solubility and diffusion rate of oxygen in matrix, the molten SiO₂ can restrain the grow th of Nb₂O₅ and guarantee the evenness of the oxide film.

Key words Multi-Phase Nb-Based albys, High temperature oxidation, Dynamical mode

1 前言

随着航空航天工业的发展,对发动机用高温材料 提出了更高要求,在 1 200 以上温度使用的材料已 成为当今材料界的一大热点。多元铌合金具有熔点 高、密度较低,高温高强等优异性能,作为重要的高温 结构候选材料已经得到了广泛的关注^[1-2]。自 20世 纪 90年代以来,以 Nb - Ti - Al Nb - Si - Al为主体 的多元多相铌合金相继得到开发,铌合金在高温结构 材料领域,显示出巨大发展潜力^[3-4]。然而铌在 600 发生"pest 氧化现象,生成无保护作用的 Nb₂ O₅^[5],严重影响了铌合金的应用,改善抗氧化性能就 成为铌合金推广应用的关键之一。目前国内外对铁 基、钴基、钛基等高温结构材料氧化行为的研究很 多^[6-8],但对铌合金的研究还主要集中在高温力学性 能上,对铌合金的氧化行为和氧化动力学的研究较 少。本研究旨在建立 Nb - Ti - Al(- Si)合金高温氧

化动力学模型,为铌合金抗氧化性能的提高和新型铌 合金的制备提供理论依据。

2 试验

将 Nb粉 (质量分数 99.99%, 10 ~ 30 μm), Ti 粉 (质量分数 99.95%, 40 ~ 80 μm), A1粉和 Si粉 (质量分数 99.99%, 40 ~ 80 μm)按 Nb - 15Ti -11A1和 Nb - 15Ti - 11A1 - 10Si的成分配料,通过机 械高能球磨制备合金复合粉末,在热压烧压机 (日 本, FVPHP - R - 10 - FRET - 40)中进行烧结。真空 度为 1.6 ×10⁻³ Pa。烧结温度为 1 500 ,保温时间 90 min,压力为 30 MPa。合金经线切割后密封在充满 氩气的石英干燥管中,在 1 200 均匀化退火 12 h。 试样规格为 10 mm ×10 mm ×5 mm,超声波清洗仪中 用丙酮清洗后备用。

1 100和 1 300 的静态氧化实验分别在高温氧 化炉中进行,用 TAS100热分析仪测量绘制合金的氧

收稿日期: 2008 - 03 - 21;修回日期: 2008 - 05 - 21

作者简介:李丹,1979年出生,硕士,主要从事难熔金属的研究工作。 E - mail: ld983@163. com

化动力学曲线。氧化前后的试样通过 POLYVASR MET金相显微镜和 KYKY2800扫描电镜进行检测分析。

3 结果讨论与分析

3.1 氧化动力学分析

合金的氧化动力学曲线如图 1所示。利用所得 数据作氧化质量增重 (*m*)²与氧化时间 *t*关系曲线 (图 2),可以看出, (*m*)²—*t*基本成直线关系,可判 断合金氧化曲线遵循抛物线规律^[9]。

图 2 合金在 1 100及 1 300 氧化增量随时间变化曲线 Fig 2 Relation between (m)² and time of alloys at 1 100 and 1 300 in air

根据 W agner^[9]氧化动力学理论,金属的氧化速 率由正负离子通过氧化膜的扩散控制,假设 t=0时, m=0,则:

$$(m)^2 = K_p t \qquad (1)$$

由 (1)式可得:

$$\frac{\mathrm{d} m}{\mathrm{d} t} = \frac{K_{\mathrm{p}}}{2 m} \tag{2}$$

(2)式即为 Wagner给出的氧化增重方程, K_p为 合金氧化常数。考虑到在实验过程中由于氧化气体 流动,导致不同区域热量不均而产生温度差异,而 Wagner在建立动力学模型时是简单假设任一时刻氧 化温度为持续稳定值,故按照 Wagner理论计算的氧 化动力学曲线必然与实际情况存在差异。Daniel Monceau等^[10]提出对 Wagner模型加以修正。

假设 t = t时, m = m则:公式 (1)可改写为:

由 (2)式相应变换可得:

$$\frac{\mathrm{d} m}{\mathrm{d} t} = \frac{K_{\mathrm{p}}}{2 m_{i}} \tag{4}$$

根据 (4)式,不同时间,合金的 *K*_p值可以计算得 出,Nb合金氧化为扩散控制型^[10-11],而元素扩散为 热激活过程,符合 Arrhenius方程^[11], *K*_p值可由(5) 式^[10]表示:

$$K_{\rm p} = K_0 \exp\left(-\frac{Q}{RT}\right) \tag{5}$$

式中, K₀为常数, Q为激活能。

根据 (3)式和 (4)式计算出三组合金的 *K*,值如表 1所示。

为确定氧化膜厚度与氧化时间关系,膜厚由下 式^[12]换算而得:

宇航材料工艺 2008年 第 6期

74 —

$$y = \frac{m \cdot M_{O_x}}{M_{O_x} \cdot O_x} \tag{6}$$

式中, y为氧化膜厚度, m为单位面积氧化增量, M_{o_x} 为氧化物分子质量, M_{o_2} 为氧的分子质量, o_x 为氧化物密度。

表 1 合金氧化抛物线常数 K_p

温度 /	$K_{\rm p}/{\rm mg}^2 \cdot ({\rm cm}^4 \cdot {\rm s})^{-1}$	
	Nb - 15Ti - 11A1	Nb - 15Ti - 11A1 - 10Si
1100	2.89 ×10 ⁻²	1. 11 ×10 ⁻²
1300	3. 80 ×10 ⁻¹	1. 68 ×10 ⁻¹

假设合金中, Nb, Ti, A1元素按各自配比全部转 化为高价氧化物,按 Nb, Ti, A1元素的原子分数来计 算氧化物的分子质量及密度。 $M_{
m Nb_{205}} = 266, M_{
m TD_2} =$ $80, M_{
m Al_{203}} = 102, Nb_{205} = 4.5, TD_2 = 4.2, Al_{203} = 3.8,$ 对于 Nb - 15Ti - 11A1合金:

 $M_{0_x} = \frac{74 \times 266 + 15 \times 80 + 11 \times 102}{100} = 220.06$ (7)

合金中各元素质量分数为:Nb - 87.23%,Ti - 9.13%,A1-3.64%。

氧化物密度计算^[12]可得:

$$_{O_x} = 87.23\%$$
 ×4.5 + 9.13% ×4.2 + 3.64% ×3.8
= 4.45 (8)

将式 (7)、(8)代入式 (6)得:

$$y = \frac{m \cdot 220.06}{32 \times 4.45} = 1.55 m \tag{9}$$

由式 (3)可得:

$$m = [K_{\rm p} (t - t_i) + (m_i)^2]^{1/2}$$
(10)

将式 (10)代入式 (9)得:

y = 1.55[K_p(t - t_i) + (m_i)²]^{1/2} (11) 同理可求得,Nb - 15Ti - 11A1 - 10Si合金氧化膜 厚与氧化时间关系为:

 $y = 0.88[K_p(t - t_i) + (m_i)^2]^{1/2}$ (12) 将表 1计算所得 K_p 代入以上公式,结合动力学 曲线,可以简单判断氧化一定时间后氧化膜的厚度。

从图 3可以看到,Nb - 15Ti - 11A1合金氧化膜 的厚度接近 100 μm,合金的氧化界面由外至内依次 是氧化膜、扩散层和基体构成;而 Nb - 15Ti - 11A1 -10Si合金的氧化膜厚度约为 50 μm,氧化后的表面只 有氧化膜,没有扩散层。扩散层的消失说明氧在合金 基体中的溶解度和扩散率得到极大的降低,一方面是 钛、硅联合作用降低了氧在铌中的扩散速率,另一方 面是形成的氧化膜具有更好的保护性,能够有效阻挡 氧向基体的扩散。

(a) Nb - 15Ti - 11A1

 (b) Nb - 15Ti - 11A1 - 10Si
 图 3 合金在 1 300 氧化 10 h后截面形貌
 Fig 3 Cross section of alloys oxidized for 10 h at 1 300 in air

通过式 (11)、(12)计算可得,两种合金在空气中 氧化 10 h后氧化膜的理论厚度分别为 93.67 和 55.26 µm。计算值与实际值存在一定的偏差,是由 于建立模型时假设所有元素均生成高价氧化物,而在 实际氧化过程中还有复相氧化物的生成,此外多种氧 化物的相互干扰对氧化膜的生长都存在一定影响,并 且合金氧化膜厚度增长趋势与实验相吻合,因此利用 式 (11)、(12)来判断一定氧化时间后的氧化膜厚度 具有一定的参考价值。

从图 4可以看出,Nb - 15Ti - 11A1 - 10Si合金的 氧化膜表面较为平整,经 X射线检测分析表明主要 形成了由 TD₂、Nb₂O₅和 SD₂组成的混合氧化膜,但 由于三者之间的 PB比 (V_{MO} / V_{M})有一定差距,所以不 能够形成连续的氧化膜;由于 SD₂在高温下呈熔融 态,对 Nb₂O₅的生长起到了抑制作用。与 Nb - 15Ti -11A1 - 10Si合金相比,Nb - 15Ti - 11A1合金在长时 间的氧化过程中,氧化膜中发生 Nb₂O₅的凸起,破坏 了氧化膜的平整,形成了部分的空洞,从而加速了进 一步氧化。

宇航材料工艺 2008年 第 6期

(a) Nb - 15Ti - 11A1

3.2 抗氧化机理讨论

在多元铌合金的氧化过程中,一般都是铌基固溶体相(Nbss)和Nbss/MC(金属间化合物相)界面优 先氧化,而MC比Nbss的抗氧化性要好,在较长时间内具有抗氧化抗力。氧在MC相中的溶解度和扩散速率显著降低,而且MC相也基本上没有内氧化现象发生,所以弥散分布的MC阻挡氧的扩散非常有利。因为金属氧化与氧的扩散密切相关,氧沿着一些晶体缺陷如晶界、位错等更易发生短路扩散,所以Nbss/MC界面处首先被氧化。

一般由熔铸法制备的铌合金,在高温氧化时在基体靠近已经被氧化的区域内都容易发生内氧化,因为 合金中 Ti, A1等元素与氧具有很强的亲和力。但在 本实验用粉末冶金方法制备的铌合金中几乎没有内 氧化现象发生;这归因于以下两个方面:首先,铌合金 微观组织更为均匀细小,大大降低了氧的短路扩散; 其次,在 900 左右 Ti发生 - Ti - Ti转变,由密 排六方转变为与 Nb晶体结构相同的体心立方结构, 使 Ti在 Nb中的扩散速率提高,使 Ti更容易发生外 氧化。所以,由粉末加工得到的铌合金在抗氧化性能 方面更具有优势。

Si作为主体合金元素或第三合金元素对铌合金的力学性能的改善特别是高温强度的提高已有了一些研究,但其对铌合金氧化性能的影响尚无统一认识。在本实验中,Si与 Nb形成的金属间化合物 Nb_s

— 76 —

Si₃对降低氧在基体中的固溶度作用显著,氧化膜中的 SO₂在高温下呈熔融态,对保持氧化表面的均匀 平整起到了有效的保护作用。

4 结论

(1)在 Wagner氧化理论基础上,建立了 Nb - 15Ti - 11A1和 Nb - 15Ti - 11A1 - 10Si两种多元铌合 金的氧化动力学模型。两种合金高温氧化动力学曲 线满足抛物线规律,氧化膜厚度与氧化时间的关系可 分别表示为: $y = 1.55 [K_p (t - t_i) + (m_i)^2]^{1/2}, y = 0.88 [K_p (t - t_i) + (m_i)^2]^{1/2}$ 。

(2)在高温氧化过程中,Nb-15Ti-11A1-10Si 较 Nb-15Ti-11A1合金表现出较好的抗氧化性能, 氧化膜表面较为均匀平整。合金中加入钛可以降低 氧在基体中的固溶度并降低氧的扩散速率;加入硅在 高温氧化时形成的熔融态 SO2可有效抑制 Nb2O3的 生长,从而保证了氧化膜表面均匀平整。

参考文献

1 Viars P R. The impact of **H**PTET on the engine: aircraft system. In: Report A1AA - 892137, Presented at the Am. Inst Aero-nautics and Astronautics, Systems and Operation Conference, Seattle, WA, 1988

2 Dollar A, Dymek S Microstructure and high temperature mechanical properities of mechanically alloyed Nb_3A l-based eterials Intermetallics, 2003; (11): 341

3 Yonosuke Murayama, Shuji Hanada High temperature strength, fracture toughness and oxidation resistance of Nb - Si -Al - Ti multiphase alloys Sci Tech of Adv Mater, 2002; (3): 145

4 Sikka V K, Aloria E Characteristics of a multicomponent Nb - Ti - Al alloy via industrial-scale practice Mater Sci Eng , 1997; A239/240: 745

5 Perkins R A, Meier G H. The oxidation behavior and protection of niobium. JOM, 1990; (8): 17

6 牛焱等. Fe - Nb合金在 600~800 、0.1 MPa纯氧中 的氧化.金属学报,1996; 32(3):294

7 牛炎, Gesmundo F C等. 两种 Co - Nb合金在 600 ~ 800 、1大气压纯氧中的氧化. 中国腐蚀与防护学报, 1996; 16 (4): 247

8 牛炎, Rizzo F C等. 在 600~800 低氧压下 Co-Nb 合金的氧化. 腐蚀科学与防护技术, 1995; 7(2): 130

9 李美栓. 金属的高温腐蚀. 北京:冶金工业出版社, 2001: 79

10 Daniel Monceau et al Determination of parabolic rate constants from a local analysis of mass-gain curves Oxidation of Metals, 1998; $50(5 \sim 6)$: 447

11 唐仁正. 物理冶金基础. 北京:冶金工业出版社, 1997:38

12 于振涛等. 钛合金在高温高压过热蒸汽中的腐蚀机 理研究. 核动力工程, 2004; 25(5): 452

编辑(吴坚)

宇航材料工艺 2008年 第 6期