低红外发射率迷彩填料的制备及光谱特性

顾宝霞 刁训刚 郝 雷

(北京航空航天大学,北京 100083)

文 摘 采用化学液相沉淀法获得了具有核层结构的 A1/ SD₂ /Fe₂O₃颜料,在基本不改变 A1粉在 8~14 µm波段红外发射率的情况下,实现了片状 A1粉的物理着色。分析了正硅酸乙酯 (TEOS)水解 - 缩聚反应及 氯化铁水解反应机理,并以此制备了 A1/SD₂ /Fe₂O₃三层结构的复合粒子,研究了包覆的工艺条件。通过扫描 电镜、能谱、X射线衍射、紫外 - 可见光吸收谱等方法对包膜后的片状 A1粉粒子进行了分析与表征。实验结果 表明,通过液相沉积法在 A1粉表面成功包覆了 SD₂ /Fe₂O₃薄膜,得到了低红外发射率的迷彩 A1粉颜料。 关键词 片状 A1粉,表面包覆,溶胶 —凝胶,低发射率,物理着色

Preparation and Spectral Characteristics of Camouflage Pigment With Low Infrared Emissivity

Gu Baoxia Diao Xungang Hao Lei (Beihang University, Beijing 100083)

Abstract The chemical deposition method was used to prepare flake alum inum powder with nuclear layer structure W ithout changing the infrared emissivity at 8 - 14 μ m wavelength region, the physical coloring of flake alum inum powder was realized The formation mechanism of the hydrolysis-polycondensation reaction of tetraethyl orthosilicate (TEOS) and reaction mechanism of ferric chloride hydrolysis were analyzed The composite particles A1/SO₂ /Fe₂O₃ were prepared and the preparation conditions were discussed Coated flake alum inum particles were analyzed and characterized by scanning electron microscopy, spectroscopy, X-ray diffraction and the UV-visible spectrum. A1 powder camouflage pignent with low infrared emissivity was successfully obtained through liquid phase deposition method by coating flake alum inum powder with SO₂ /Fe₂O₃ film.

Key words Flake alum inum powder, Surface coating, Sol-gel, Low emissivity, Physical coloring

1 引言

— 58 —

红外涂层经历了近四十年的研究历程,在红外隐 身材料中处于相当重要的地位。然而,在兼顾可见光 及雷达波要求的情况下,如何实现最低的红外发射率 是红外涂层研究的难点。美国海军部发明了用于军 舰的兰灰色低红外发射率涂料,涂层在 3~5、8~14 和 2~15 μm的红外发射率分别为 0.463、0.520 和 0.512;另有一些美国学者研制的一种低发射率热隐 身漆是用直径为 70 μm 的片状 A1(质量分数为 38%),掺杂到无机磷酸盐黏合剂中,获得了 10.6 μm 频谱区发射率为 0.18的良好结果^[1]。王自荣等^[2] 以酚醛树脂为基料,测试了 A1 Zn, Fe, Cu, Ni金属粉 末和单晶 Si及其涂料在 8~14 μm 波段的平均发射 率,在这几种金属中, A1粉粉末的发射率最低, 为 0.478,A1粉做填料制成涂料后的发射率为 0.748;汪 小舟等^[3]人研究的胶原纳米复合涂料发射率可达 0.658。翁小龙等^[4]研究的低发射率涂料,其发射率 最低可以达到 0.55左右。

综合文献分析表明,使用 A1粉为代表的金属颜 料仍是目前国内外低发射率涂料普遍采用的技术手 段;就达到的技术指标而言,较为先进的满足使用要 求的低红外发射率水平国外在 0.3~0.5,国内在 0.5 以上。

涂层材料的红外发射率主要取决于颜料和胶黏 剂。其中的颜料主要包括金属颜料、着色颜料和半导 体颜料三类。研究表明,不透明物体的反射率越高, 发射率就越低,因此金属是红外隐身涂料中最重要的 填料。可供选用的金属或合金颜料有 A1, Zn, Sn, Au,

宇航材料工艺 2008年 第 3期

收稿日期: 2007 - 12 - 24;修回日期: 2008 - 02 - 26

作者简介:顾宝霞,1985年出生,硕士,主要从事新型功能薄膜与涂层的研究工作

青铜等,实际上应用最广泛的是性能优良、价格低廉 的金属 A1粉^[5~8]。金属颜料的粒子形态、尺寸对涂 料的红外发射率有显著影响,尺寸在 10~100 μm的 片状 A1粉其红外发射率比球形和其他形态的 A1粉 低,应用效果最好。西方军事强国都在红外隐身涂料 中加入大量 A1箔片,以降低红外发射率并大量用于 军事装备^[9~11]。但由于 A1片的加入使涂层对可见 光的反射加强,很难与背景融合在一起,不利于可见 光隐身;同时 A1片的抗氧化性较差,长期暴露在空气 中容易氧化,氧化后发射率大大增加,这些不利因素 的存在使金属 A1粉在实际应用中受到很大限制。

本文通过在片状 A1粉上包覆致密的 SD₂ /Fe₂O₃ 涂层,寻找到一种制备低红外发射率迷彩填料的方 法,以克服可见光隐身的问题。该迷彩填料红外发射 率低,基本满足红外隐身的要求,颜色为可见光迷彩 基本色之一,有良好的多波段隐身兼容特性。

2 实验

2.1 原理

由图 1可知彩色 A1粉的色彩主要来源于薄膜的 相互干涉。

图 1 以 AI片为基层的双层薄膜系光路图

Fig 1 Road map of double-layer thin film based on aluminum sheet

当光从空气中(光疏介质)射到 Fe₂O₃薄膜上时, 入射光将分成与入射光振动方向相同的透射光和与 入射光振动方向相反的反射光,而透射光又将被 SD₂表面反射回来,而进入 SD₂膜层的光会发生类似 的透射与反射。当光程差是波长的整数倍时,相干光 强度值最大;当光程差是半波长的奇数倍时,相干光 强度值最小,因而对于特定厚度的膜层而言,若以白 光入射,由于可见光波长在 400~800 nm,只能是某 一特定波段的光得到加强或者减弱,其对应的颜色为 相应颜色的加强色或者补色。因而可以通过控制膜 层的厚度来获得所需的颜色。而根据公式(1)可知, n越小,光程差越大,发生双色效应的可能性越大。 双色效应是指在正视、掠视条件下干涉色不一样。这 就要求制备具有双膜层结构的彩色 A1粉时,底膜采 用低折射率材料 SD₂,同时 SD₂还起到增大粒子体 积和结合力的作用。出于"两光波在相遇点所产生 的振动的振幅相差不悬殊 没 A1颜料光泽性的考虑, 面膜采用高折射率材料 Fe₂O₃。而对于鳞片状的 A1 粉,光线干涉的情况更为复杂,需要进行大量的实验 和理论计算。

$$F - G = \frac{2d}{n + \sqrt{n^2 - 1}} \tag{1}$$

式中, F和 G分别为正射和掠射情况下的光程差, d和 n分别为膜层厚度和材料折射率。

前期研究发现片状 A1粉的包覆改性在高温体系 中进行容易氧化并团聚,因此选择一个温和的反应体 系尤为重要。采用正硅酸乙酯 (TEOS)的水解一缩聚 对粉体进行包覆,对实验设备的要求简单,且在较低 的温度下就能进行。本文采用溶胶 - 凝胶的方法,涉 及的化学反应为:

 $Si(OC_2H_5)_4 + 4H_2O^{----}4C_2H_5OH + Si(OH)_4$

$$\operatorname{Si}(\operatorname{OH})_4 = 2\operatorname{H}_2\operatorname{O} + \operatorname{SO}_2$$
 (3)

 $\operatorname{FeCl}_{3} + 3\operatorname{OH}^{2} - 3\operatorname{Cl}^{2} + \operatorname{Fe}(\operatorname{OH})_{3} \qquad (4)$

$$2\operatorname{Fe}(\operatorname{OH})_{3} - 3\operatorname{H}_{2}\operatorname{O} + \operatorname{Fe}_{2}\operatorname{O}_{3}$$
(5)

2.2 实验材料与制备流程

实验中采用的试剂如表 1所示。实验流程如图 2所示。首先利用 TEOS的水解 - 缩聚在片状 A1粉 表面包覆上一层均匀的 SO₂薄膜,然后氯化铁在二 层薄膜上发生水解反应,最终形成 A1/SO₂/Fe₂O₃三 层复合粒子。

]	fab. 1 Experi	n en tal reagen ts	
试剂	分子式	分子量	纯度	生产商
无水乙醇	CH ₃ CH ₂ OH	46.07	A. R.	北京北化精细化学药品有限责任公司
氨水	$NH_3 \cdot H_2O$	35. 05	A. R.	北京化工厂
盐酸	HC1	36.46	A. R.	北京北化精细化学药品有限责任公司
正硅酸乙酯	$(C_2H_5O)_4Si$	208.33	A. R.	广东汕头市西陇化工厂
氯化铁	FeCl ₃ · 6H ₂ O	270. 29	A. R.	国药集团化学试剂有限公司

表 1 实验试剂

宇航材料工艺 2008年 第 3期

Fig 2 Experimental flow chart

2.3 性能测试

采用美国 FEI公司扫描电子显微镜及能谱仪对 Al颜料的表面形貌进行分析,采用日本岛津 7000型 X射线衍射仪对 Al颜料的结构进行分析,实验条件 为:管电压为 40 kV,管电流为 40 mA,Cu靶(K = 0.154 mm),步进扫描速度为 0.02 %s,扫面范围为 20 ~80 °。将包覆后的颜料 Al粉进行 KBr压片制膜, 然后用 WQF - 400型傅里叶变换红外光谱仪进行测 定。采用澳大利亚 GBC公司的 UV-Visible 3010光谱 分析仪对样品进行全程扫描,获得了颜料的紫外 - 可 见光吸收光谱。用昆明物理所的 HWF - 1型红外辐 射率测量仪测量红外发射率。

3 结果与讨论

3.1 AI粉包覆前后的表面形貌分析

图 3为片状 A1粉包覆前后的扫描电镜照片以及 能谱曲线。由图 3(a)可见原料 A1粉呈规则的片状 结构,边缘清晰光洁,大约在 30~60 µm。由图 3(b) 可以看出,包覆后复合粒子表面仍然较光滑,保持了 原有的片状结构,但棱角变得光滑。从图 3(c)可以 看出,包覆后复合粒子表面仍然较光滑,比起原有的 片状结构,厚度明显加大,可以清楚的看到其分层情 况。为了进一步确定 A1粉表面包覆有 SD₂ /Fe₂O₃ 膜,采用 X射线能谱仪 (EDX)对其分析,如图 3(d) 所示,谱线上有明显的 Si Fe和 O的峰。证明对片状 A1粉表面实现了包覆,该膜的成分有 O、Si Fe。

图 4 为加入不同 TEOS量的片状 A1粉包覆 SD₂ /Fe₂O₃后的 SEM照片,其他工艺条件为:A1粉 3 g,反应温度 60 ,反应时间 6 h。可见 TEOS量在直 接包覆工艺中尤为重要。中间层包覆的好坏直接关 系到三层复合粒子的性能,如结合力、致密度及最终 产物的颜色。从图 4中可看出,TEOS量少的情况下 包覆的三层粒子粒径小而疏松,而量多的情况下所得 粒子粒径大而紧凑。这是因为中间层 SO₂本来起增 大粒子体积与增大结合力的作用,量少,自然包覆不 完全,因此再在其上包覆三氧化铁时会很困难。因而 我们认为 TEOS的添加量为 15 mL最佳。

图 4 不同 TEOS量包覆 SD₂ /Fe₂O₃ 后的片状 A1粉的 SEM图 Fig 4 SEM photographs of SD₂ /Fe₂O₃ -coated flake alum inum powder with different amounts of TEOS

(a) 5 mL

15 mL

(b)

图 5为不同反应时间下包覆 SD₂ /Fe₂O₃后的片 状 A1粉的 SEM 照片,其他工艺条件为:A1粉 3 g,反 应温度 60 ,TEOS量 15 mL。可见,反应时间是影响 薄膜表面形貌的一个非常重要的因素。结合图 5 可 以看出,反应时间太短,水解不完全,包覆率低,表面 颗粒弥散分布,结合力很差。时间过长,沉淀老化,导 致膜层粒子堆积疏松,干燥收缩后出现裂痕。同时, 随着反应时间的延长粒径呈增大的趋势,这是因为反 应时间越长,TEOS、氯化铁水解越完全,膜的厚度逐 渐增加。当时间再度延长时,粒径基本保持不变,这 说明水解趋于饱和,因而认为反应时间为 6 h最佳。

宇航材料工艺 2008年 第 3期

(a) 3 h
(b) 7 h
图 5 不同反应时间包覆 SO₂ /Fe₂O₃
后的片状 A I粉的 SEM 照片

Fig 5 SEM photographs of SO_2 /Fe₂O₃-coated aluminum flake at different reaction time

3.2 AI粉包覆前后的 XRD 结构分析

图 6为片状 AI粉包覆前后的 XRD图谱,其中曲 线 为片状 AI粉包覆前的 XRD图谱,可见曲线 中 只有 AI的衍射峰,不存在氧化铝的衍射峰。曲线 、

和 分别为 TEOS量为 5、10和 15 mL时包覆 SO₂ 后片状 AI粉的 XRD 图谱,可见除了 AI的衍射峰以 外,在 SO₂的峰位衍射峰发生了宽化,说明包覆的 SO₂为无定型态。而曲线 和 是反应时间分别为 3 和 7 h包覆 SO₂ /Fe₂O₃后的片状 AI粉的 XRD 图谱, 从曲线 中可以明显地看到 Fe₂O₃的衍射峰,同时 AI 的衍射峰强度明显降低,同时发现有 Ah₅ Fe₃ Sh₅新 相出现。通过 XRD 分析可知:包覆膜层含有 SO₂和 Fe₂O₃,结合实验原理得知 SO₂基本上是以膜的形式 包覆在 A1粉表面的。

3.3 AI粉包覆前后的可见光谱特性与红外发射率分析

以包覆 SD₂ /Fe₂O₃后的片状 A1粉样品为填料, 加入 25%的醇酸漆作为黏合剂,均匀搅拌后涂在铝 板上制得涂层,其最低红外发射率为 0.48,与 A1粉 粉末本身的红外发射率 0.478比较接近。

图 7为氯化铁量分别为 3、5、7和 9 g包覆 SO₂ / Fe₂O₃后片状 A l粉的紫外 - 可见吸收光谱,其他工艺 条件为: A l粉 3 g, TEOS 10 mL,反应时间 6 h,温度 60 。由图 7可见,三层复合粒子在紫外 - 可见区域 宇航材料工艺 2008年 第 3期 的吸收很强。图中存在明显的波峰、波谷,使得样品 呈现色彩。这是因为存在薄膜干涉,从 Fe₂O₃表面反 射的光与从 SD₂ /A1和 A1界面反射的光产生叠加。 当相干光相位相同时,产生干涉增强,出现最大的反 射光;当相位相反时,产生增透效应。可以看出薄膜 在 300 nm 处有较强的吸收峰,这可指认为是 Fe - O 之间的电子跃迁。

图 7 不同氯化铁量包覆 SO₂ /Fe₂O₃ 后片状 A1粉的紫外 - 可见吸收光谱

Fig 7 UV-visible absorption spectra of SD_2 /Fe₂O₃-coated flake aluminum powder with different amounts of ferric chloride

图 8给出了反应温度和氯化铁添加量对 A1/ SO₂ / Fe₂O₃涂层在 8~14 µm 波段红外发射率的影 响规律。曲线 对应的工艺条件为:A1粉 3 g, TEOS 15 mL,反应时间 6 h,温度 30~80 ,氯化铁 3 g, 可 见,反应温度为 60 获得的 A1/SO₂ / Fe₂O₃填料做成 的涂层红外发射率最低。曲线 对应的工艺条件为: A1粉 3 g, TEOS 15 mL,反应时间 6 h,温度 60 ,氯化 铁 3~11 g, 可见,添加 3 g氯化铁时获得的 A1/ SO₂ /Fe₂O₃填料做成的涂层具有最低的红外发射率。

图 8 反应温度和氯化铁添加量对 A1/SO₂ / Fe₂O₃ 涂层红外发射率的影响

Fig 8 Effects of reaction temperature and addition of ferric chbride on infrared emissivity of $A1/SD_2$ / Fe₂O₃ coating

4 结论

(1)采用化学液相沉积法在片状 A1粉表面包覆 了 SO₂ /Fe₂O₃薄膜,在基本不改变 A1粉在 8~14 μm 波段发射率的情况下,实现了片状 A1粉的物理着色。 (下转第 80页)

2

从图 6(b)中可以看出,该复合材料的组织颗粒 细小而均匀、数量多。这是由于熔化温度的升高和预 制块的预热,一方面,增加 AI液与 C颗粒之间的接触 润湿性,使该体系的反应充分进行,另一方面,为上述 反应的进行提供更多的自由能,使体系的反应物活性 得到显著提高,有利于固液界面化学反应的发生,更 能促进合成反应的彻底性。

4 结论

(1)反应初始温度对 $A_{I_2}O_3 - TiC_P / A_{I_2} c d h h$ 的制备影响很大。

(2)在铝液为 1 100 下加入经预热处理后的预制块,待反应结束后结合石墨棒充分搅拌,能够获得 增强相颗粒均匀细小、体积分数高的原位自生 A LO₃ - TiC_P/A l复合材料。

参考文献

1 李江田,孙康宁,赵萍等.反应合成 Ti₃A1/TiC +A <u>b</u>O₃ 复合材料烧结过程热力学分析.稀有金属材料与工程,2005; 34(3):1 443

2 Tjong S C, Ma Z Y. Microstructural and mechanical characteristic of in situ metal matrix composites Materials Science and Engineering, 2000; 29: 49 ~ 113

3 Tjong S C, W ang G S, Geng L et al Cyclic deformation

behavior of in situ alum inum matrix composites of the system A1-Al₃Ti - T \mathbf{B}_2 - Al₂O₃. Composites Science and Technology, 2004; (64): 1 971 ~ 1 980

4 王振卿. A1-(Ti, TO₂, ZO₂)-C体系的反应机理 及其材料的熔体原位反应合成.山东大学博士学位论文, 2005

5 Peng Yu, Zhi Mei, Tjong S C. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al_2O_3 and TiC submicron particles Materials Chemistry and Physics, 2005; (9): 109 ~ 116

6 Cho C H, Kin D K Microstructure evolution and isothermal compaction in TO_2 - A1 - C combustion reaction Materials Synthesis and Processing, 2002; 10(3): 127 ~ 134

7 Kou Sheng zhong Effect of carbon content on microstructure of in situ $A \downarrow O_3$ - TiC/A1 composites Trans Nonferrous Met Soc , 2001; 11(5): 756 ~ 759

8 Nakata H, Chon T, Kane N. Fabrication and mechanical properties of in situ formed carbide particulate alum inium composites Journal of Materials Sciences, 1995; 30: 1 719 ~ 1 727

9 Mark Eston, David Stjohn Grain refinement of aluminium albys part 1, the nucleant and solute paradigms-a review of the literature Metallurgical and Materials Transaction A, 1999: 1 613 \sim 1 633

(编辑 李洪泉)

(上接 61页)

(2)反应时间和反应温度是影响薄膜表面形貌 的关键性因素。TEOS和氯化铁的添加量直接影响 到材料的可见与红外光学性能。填料的最佳制备工 艺参数为:Al粉 3 g, TEOS量 15 mL,反应时间 6 h,温 度 60 ,氯化铁 3 g。

(3)利用光谱改性后的片状 A1粉填料制得的涂 层其红外发射率最低为 0.48。

参考文献

 1 庄海燕,郑添水,任润桃等. 红外隐身涂料的研究现 状及发展趋势.材料开发与应用,2006;21(3):43~46

2 王自荣,于大斌,孙晓泉. 红外隐身涂料颜料发射率 研究.红外技术,2000; (1):24~26

3 汪小舟,周钰明,韩凤俊等. 胶原 - h₂O₃纳米复合低 红外发射率涂料的制备及性能研究. 涂料工业, 2006; 36(8): 40~42

4 翁小龙,张捷,刘孝会.热红外低辐射率涂料的研制. SURFACE TECHNOLOGY, 2001; 30(4): 36~38 5 任卫,魏美玲,程之强等. 红外隐身材料及相关技术 研究进展. 材料导报,2000;6(10):153~154

6 王庭慰,程从亮,张其土. 8~14 µm波长低红外发射 率涂料的研究.光学技术,2005;31(4):597~600

7 徐国跃,王函,翁履谦等.纳米硫化物半导体颜料的 制备及其红外发射率研究.南京航空航天大学学报,2005;37 (1):125~129

8 董延庭,张捷,翁小龙等.高透明红外隐身涂料粘合剂的研制.中国涂料,2005;21(3):14~17

9 宋兴华,於定华,马新胜等.涂料型红外隐身材料研究 进展.红外技术,2004;26(2):9~12

10 张帆,王建营,杜海燕等. 红外隐身涂料研究进展. 化学与粘合,2004;2(1):87~89

11 宋兴华,於定华,马新胜等.涂料型红外隐身材料研 究进展.红外技术,2004;26(2):9~12

(编辑 任涛)