分级时效工艺对 1420Al - Li 合金组织与性能的影响

刘北兴 覃耀春 李仁顺

(哈尔滨工业大学材料科学与工程学院 哈尔滨 150001)

文摘研究了分级时效工艺对 1420 Al - Li 合金组织与性能的影响,试验结果表明:经 70 / 12 h + 120 / 4~10 h 工艺分级时效处理可使 1420 Al - Li 合金的综合力学性能得到显著的提高;分级时效工艺使 1420 Al - Li 合金析出的 相粒子分布均匀、尺寸细小。

关键词 铝锂合金,分级时效,显微组织,力学性能

Effect of Double Stage Aging on Microstructure and Properties of 1420 Al-Li Alloy

> Liu Beixing Qin Yaochun Li Renshun (Harbin Institute of Technology Harbin 150001)

Abstract Effect of double stage aging on microstructure and properties of 1420 Al-Li alloy is studied. It is shown that the double stage aging $(70 / 12 h + 120 / 4 h \sim 10 h)$ may greatly increase comprehensive mechanical properties of the 1420 Al-Li alloys. Besides ,Fine phase and uniform distribution of precipitation in Al-Li alloys is obtained by the double stage aging technology.

Key words Al-Li alloys, Double stage aging, Microstructural, Mechanical property

1 引言

1420 Al - Li 合金是前苏联研制的 Al - Mg - Li 系合金,与其它铝锂合金相比,密度更低,焊接性能、 抗腐蚀性能和低温性能更优异^[1],但其强度和塑性 尚不够理想,进一步提高它的强塑性是扩大其应用 的一个重要课题。采用分级时效工艺可以明显提高 Al - Cu - Mg - Li 系合金的力学性能^[2],有关研究表 明,1420 Al - Li 合金在时效过程中首先形成 GP 区^[3],因此也可以采用分级时效的工艺进行处理。 本文研究了 1420 Al - Li 合金分级时效工艺对组织 与性能的影响。

2 试验材料及方法

试验用材料为 1420 Al - Li 合金冷轧板材,板厚 2 mm,其化学成分为:1.85 %Li、3.59 %Mg、0.077 %

Zr、0.10%Fe,余量为Al。拉伸试样垂直于板材轧制的方向截取。试样尺寸如图1所示。

图 1 拉伸试样的尺寸 Fig. 1 Dimension of tensile specimens

试样的固溶处理在硝酸盐浴炉中加热至450 ,保温 30 min 后水冷,时效工艺规程分为两组,第 组规程中第一级时效工艺为100 分别保温 8

— 49 —

收稿日期:2000-11-13

刘北兴,1945年出生,教授,主要从事金属强化韧化、铝合金电场热处理研究工作 宇航材料工艺 2001年 第3期

h、12 h,第二级时效工艺为 150 分别保温 4 h、10 h、 16 h 和 22 h;第 组规程中,第一级时效工艺为 70 /12 h,第二级时效工艺为 120 ,保温时间分别 为4h、10h、、16h,以及150 /4h,以单级时效工艺 120 分别保温12h、30h和50h作为对比工艺,见 表1。

组别	时效工艺	_{0.2} / MPa	_b / MPa	/ %
	100 / 8 h + 150 / 4 h	313.7	463.6	8.4
	100 / 8 h + 150 / 10 h	320.6	467.8	7.7
	100 / 8 h + 150 / 16 h	321.7	469.4	7.3
	100 / 12 h + 150 / 4 h	322.5	461.6	7.8
	100 / 12 h + 150 / 10 h	325.7	462.5	7.6
	100 / 12 h + 150 / 16 h	326.2	464.6	7.4
	70 / 12 h + 120 / 4 h	303.8	479.9	12.0
	70 / 12 h + 120 / 10 h	345.8	505.3	9.5
	70 / 12 h + 120 / 16 h	348.4	523.2	8.7
	70 / 12 h + 150 / 4 h	329.6	487.6	9.7
	120 / 12 h	260.8	435.7	10.3
单级	120 / 30 h	285.3	454.1	10.1
	120 / 50 h	289.2	454.6	9.9

表 1 试样的拉伸性能 Tab.1 Mechanical properties of the tensile specimens

在 Philips — CM12 型透射电镜上观察合金的显 微组织,用 Instron 电子拉伸试验机在室温下进行拉 伸试验,夹头移动速度为 0.5 mm/min,每种规程得 到的数据为三个试样的平均值。

3 试验结果与分析

3.1 拉伸性能

拉伸性能测试结果如表 1 所示。试验结果表 明:试样的抗拉强度及屈服强度随第二级时效时间 的延长而增加,延伸率则随第二级时效时间的延长 而降低。但总的来看,第 组工艺得到的拉伸性能 指标均不理想,强度和塑性均较低。第 组工艺的 拉伸曲线如图 2 所示。经 70 /12 h 预处理后,再经 120 /4 h~10 h 时效,试样得到的综合力学性能显 著提高;提高第二级时效温度虽然强度有所提高,但 塑性降低较大。

图 3 为试样在 120 单级时效工艺和 70 /12 h +120 分级时效工艺的塑性 —强度关系曲线。由 图 3 可以看出,在第 组分级时效工艺中,第二级时 效时间小于 10 h 时,试样的塑性 —强度曲线均位于 120 单级时效曲线的右上方,说明试样采用第 组 分级时效工艺规程,可获得显著优于单级时效处理 时的强度和塑性配合。

图 2 试样经 70 / 12 h + 120 分级时效后的拉伸性能曲线 Fig. 2 Mechanical properties vs second stage aging time for specimens tested in double stage aging(70 / 12 h + 120)

宇航材料工艺 2001 年 第3期

3.2 显微组织

图 4(a) 为试样经 70 / 12 h + 120 / 4 h 分级时 相形貌. 相的平均直径约为 2 nm, 效处理后的 图 4 (b) 为试样经 120 / 12 h 单级时效后的 相形 貌, 相平均尺寸约为 8 nm,由图可以看出分级时 效工艺可使 相尺寸明显减少,且分布均匀。这是 由于在预时效处理时晶内生成均匀分布的 GP 区, 可以作为 相析出的形核核心,使 相形核率提 高,从而导致 相在晶内均匀弥散析出。在 Al - Cu - Mg 合金中,时效析出的顺序为: GP 区 S S S,S相是有序的 GP 区,也称为 GP 区^[2]。在 Al -Mg - Li 合金中 GP 区是如何转变成 相的还有待于 相在基体中均匀弥散析出是分级时 进一步研究。 效提高合金强塑性的主要原因。

(a) 70 / 12 h + 120 / 4 h

宇航材料工艺 2001 年 第3期

图 5 为第 组工艺中采用 150 /4 h 进行第二 级时效时析出的 相形貌。图 5 与图 4 (a) 比较可 以看出,在相同预时效条件下,提高第二级时效温度 使 相尺寸显著增大,说明温度是决定 相粗化动 力学的主要因素,因为提高温度也就提高了溶质原 子的扩散系数,使 相粗化速率加快。

图 5 第二级时效为 150 /4 h 时析出的 暗场像(TEM) Fig. 5 precipitation for specimens tested in double stage aging(70 / 12 h + 150 / 4 h)(TEM)

4 结论

(1)采用 70 / 12 h + 120 / 4 h ~ 10 h 分级时效 工艺可使 1420Al - Li 合金获得显著高于单级时效工 艺得到的力学性能;提高第二级时效温度使合金的 塑性显著降低。

(2) 1420Al - Li 合金经 70 / 12 h + 120 / 4 h ~ 10 h 分级时效析出的 相分布均匀、弥散;提高第二 (下转第 59 页)

— 51 —

图 1 内标元素浓度与灵敏度关系图

Fig. 1 Element concentration vs sensitivity of inner calibration

表4 工作曲线及精密度

Tab. 4Calibration line and accuracy

分析线	工作曲线的 相关系数 <i>R</i>		元素含量 / %		RSD(三次) /%	
	Y内标	无内标	Y内标	无内标	Y内标	无内标
Ni 231.604	0.999999	0.999999	8.94	8.97	0.11	0.50
Ni 221.647	0.999999	0.999999	9.02	9.06	0.06	0.51
Cr 205.560	0.99997	0.99986	17.1	16.9	0.09	0.55
Cr 205.158	0.99993	0.99991	17.2	17.0	0.04	0.47

2.3 样品分析

采用以上方法分析了 2Cr13 和 1Cr18Ni9Ti 牌号的实际样品,其分析结果见表 5。

表 5 平行样品分析结果

Tab. 5 Results

样品	元素	波长 / nm	元素含量 (1 [#])/ %	元素含量 (2 [#])/ %	平行差
20.12	Cr	205.560	11.5	11.6	0.1
2013	Cr	205.158	11.6	11.7	0.1
1Cr18Ni9Ti	Ni Ni Cr	231.604 221.647 205.560	9.18 8.92 17.2	9.15 8.89 17.2	0.03 0.03
	Cr	205.158	17.5	17.4	0.1

从表中可以看出,该方法的平行差与传统的化 学法得到的平行差相当,结果较为满意。

3 结论

通过加入内标元素,可以很好的改善分析结果的精密度(提高一个数量级),该方法用于合金中常量成分的分析,结果较好。

参考文献

1 刘飞鸣,高福家.钢中化学元素的 X—射线荧光光谱 分析.光谱学与光谱分析,1996;16(6):107~112

2 陈隆懋等翻译.感耦等离子体在原子光谱分析法中 的应用.北京:人民卫生出版社,1992

3 陈新坤. 电感耦合等离子体光谱法原理和应用. 天 津:南开大学出版社,1987

(上接第 51 页)

级时效温度则使相变得粗大。 2 甄良.2091 型铝锂合金在不同热处理条件下的组织与拉伸性能.哈尔滨工业大学硕士学位论文,1991:67~85 1 ,

宇航材料工艺 2001 年 第3期

-7

- 59 -