·计算材料学 ·

编织复合材料在高温热结构中的应用

季宝锋! 孙艳杰² 章 凌! 杨 柳! 提亚峰!

(1 北京宇航系统工程研究所,北京 100076)(2 航天材料及工艺研究所,北京 100076)

文 摘 通过对使用 2.5D 编织工艺生产的复合材料发动机支撑结构的高温热传导分析,得到了薄壁回转 体构件承受高温作用后的传导特性;通过地面富氧状态下的考核试验,验证了该结构能够满足壁面 950℃高温 长时间使用要求;有限元分析与考核试验结果一致,验证了有限元计算的正确性和地面试验各项热流补偿参数 的合理性,对此类产品在工程应用中的分析与预示具有很强的指导意义。

关键词 编织复合材料,2.5D 编织结构,热结构

中图分类号:TB33 DOI:10.12044/j.issn.1007-2330.2017.04.003

Application of Braiding Composites in Design of High-Temperature Thermal Structures

JI Baofeng¹ SUN Yanjie² HANG Ling¹ YANG Liu¹ TI Yafeng¹ (1 Beijing Institute of Astronautical Systems Engineering, Beijing 100076) (2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

Abstract The 3D braiding composites is widely used in the field of aviation, aerospace and other high technology because of excellent properties. The resistance of 3D braiding composites to high-temperature is an important application. In this paper, the heat conduction characteristics of a revolving thin wall under high-temperature are obtained through the heat conduction analysis of a 2.5D braiding CFRP engine structure. Then, through the test under the ground state of oxygen enrichment, it is proved that the structure can be used under high-temperature of 950°C for long time. The consistency of finite element analysis and test results verifies the calculation correctness and the rationality of compensation parameters selection in test. The study has a good guiding significance to the application of 3D braiding composites in engineering.

Key words Braiding composites, 2.5D braiding structure, Thermal structure

0 引言

编织复合材料结构呈网状交织不分层整体,具有 优良的层间性能和综合力学性能^[1],使用抗高温树 脂固化成型的碳纤维编织结构件具有十分良好的耐 烧蚀性和耐冲刷性^[2]。在生产工艺上,使用编织技 术可以直接编织出各种形状、不同尺寸的整体异型构 件,结构件成型后不需再加工,避免了后加工造成的 纤维损伤。近 20 年来,国际上对三维编织复合材料 的制造与应用技术,如用三维编织复合材料制造耐高 温、烧蚀和高冲刷的导弹头锥、火箭发动机的喉衬、发 动机裙和导弹弹体或火箭箭体、航天器特殊结构件、 飞机机翼等的研究极为重视^[3]。

碳纤维复合材料编织制造纤维构架常用有 3D

和 2.5D 编织结构、正交三向结构、多轴向结构等。在 工程实践中,考虑到自动化生产条件和效率问题, 2.5D 编织结构往往成为优选。编织复合材料在使用 过程中必须进行的弹性、热物理性能、强度和失效等 情况的分析计算主要有解析法和数值法。用解析法 和数值法来预测编织复合材料的力学性能是一种成 本低且有效的方法,由于结构的复杂性用解析法对编 织复合材料的结构建模很困难^[4]。针对目前 3D 编 织构件静态力学和动态力学研究较多^[5-7]、热力性能 研究较少的情况,本文通过对工作于高温、热冲刷和 热力载荷复合作用环境下,使用碳纤维复合材料 2.5D 编织工艺生产的发动机支撑结构的有限元分析 和地面热强度试验考核,研究该产品适应于高温热环

- 基金项目:国防基础科研项目(A0320131001)
- 第一作者简介:季宝锋,1982年出生,高级工程师,主要从事运载火箭的结构设计工作。E-mail:jibaofeng12345@163.com

收稿日期:2017-03-28

境使用能力和结构热传导特性,同时通过试验验证有 限元分析的正确性和准确性。

1 复合材料 2.5D 编织结构件

1.1 2.5D 编织原理

2.5D 编织复合材料采用机织或编织成型,通过 纬纱和经纱之间缠绕形成互锁,纤维束在厚度方向上 以一定角度进行交织,使材料具有更好的整体性,因 而具有良好的剪切性能及很强的可设计性。2.5D 编 织复合材料避免了 2D 编织复合材料层间性能差和 3D 编织复合材料工艺复杂的缺点,降低了制造成本、 缩短了生产周期,且易于制备回转构件。使用 2.5D 编织工艺制造的结构件典型特点是纬纱平直、经纱弯 曲、结构为整体、可机械加工。2.5D 编织结构件编织 工艺原理见图 1。

1.2 发动机支撑结构件及编织织物工艺

发动机支撑结构件编织 2.5D 结构织物是将经纱 系统垂直吊起来,按照设计的行与列对经纱进行初始 排列,然后把经纱按设计好的运动规律互相进行位置 变换,每变换一次位置,引一次纬纱,从而实现经纱和 纬纱的一次"交织"。根据设定的结构,变换若干次 经纱位置并引入相应的纬纱后完成一个完整运动循 环,经纱和纬纱实现了多次"交织",完成一个完整的 结构单元,重复以上运动循环,直到编织完成为止。 对初始行与列排布及每列经纱运动规律进行调整,就 可以编织出不同结构的 2.5D 编织织物结构。2.5D 编织工艺结构件微观结构见图 2。

图 2 2.5D 编织工艺微观结构示意图

Fig.2 Schematic diagram of 2.5D braiding microstructure 宇航材料工艺 http://www.yhclgy.com 2017 年 第4期

发动机支撑结构件结构形式为典型的圆柱回转 体薄壁结构(图3),壁厚均为3mm,中间均布三处散 热开口,回转体轴向为纬向,回转方向为经向,2.5D 编织织物经、纬向工艺参数见表1。

图 3 发动机支撑结构图 Fig.3 Engine support structure

表1 编织织物工艺参数

Tab.1 Braiding structure process parameters

经纱	纬纱	经密∕根·cm ⁻¹		纬密/根·cm ^{−1}	
		圆柱	直翻边、 斜翻边	圆柱	直翻边、 斜翻边
单股	直翻边为 双股,其他 为单股	9.0±1.0	8.5±1.5	3.5±1.0	3.5±1.0

2.5D 编织发动机支撑结构件成型使用 RTM 工 艺制造^[8],系统由原材料系统、注胶系统和模具系统 组成。过程是将预制件放入密闭的模具中,在一定的 温度、压力下,将耐高温树脂注入模腔而固化成型。

2 2.5D 编织构件热传导分析与预示

2.1 热分析理论基础

无内热源的热传导控制方程为:

$$\frac{\partial}{\partial t}(\rho cT) = \frac{\partial}{\partial x_i} \left(k_i \frac{\partial T}{\partial x_i} \right) \tag{1}$$

式中,*T*为温度,*ρ*为密度,*c*为比热容,*k*为热导率,*i*=1,2,3。

初始条件为:

$$T|_{t=0} = 20^{\circ} \text{C}$$
, on Ω (2)

式中,t为时间, Ω 为热传导求解域。

边界条件为:

$$-k_n \frac{\partial T}{\partial n} = h(T - T_e) + \varepsilon \sigma (T^4 - T_e^4) , \text{ on } \Gamma$$
 (3)

式中,n为边界法向,h为对流换热系数, ε 为辐射系数, σ 为玻尔兹曼常数, T_e 为环境温度; Γ 为边界区域。

2.2 结构热传导有限元分析

采用有限元方法对发动机支撑结构进行热分析, Abaqus 有限元模型见图 4,采用六面体一阶热传导单 元。热源位于套筒内,温度梯度主要沿 3 mm 厚度方 向,在此方向划分 4 个单元。结构材料性能见表 2。

密度/kg·m ⁻³	比热容/J·(kg·K)⁻¹	热导率/W・(m・K) ⁻¹	
1700	1400	1.5	

计算使用边界条件见图 5,图中模拟在真实受热 状态下发动机支撑结构单面结构受热传导过程(另 一面结构与其对称),右侧"辐射加热"是发动机支撑 结构圆柱筒内发动机产生的高温热量向结构外传导, 图中"试验件"模拟的是 3 mm 厚发动机支撑结构圆 柱体单面壁板,左侧"辐射散热"是发动机支撑结构圆 柱体外侧向空间散热过程。参数设置为:结构内壁 有石英灯管辐射加热,辐射系数取 0.8,石英灯管温度 为 1 150℃;外壁有辐射散热,辐射系数取 0.8,环境温 度取 20℃;内壁和外壁均有对流换热散热,考虑到试 验室空间较大,热试验对空间温度影响较小,取环境 温度为 20°、内壁换热系数取 h_1 ,外壁换热系数取 h_2 ,根据热补偿条件, $h_1 = h_2 = 80$ W/(m²·K),环境初 始温度取 20°C。计算时间步长采用自动增量策略, 总时长为 200 s,初始时间步长为 0.1 s,最小时间步长 为 ms,最大时间步长为 1 s,约束每个时间步长的结 构最大温升不超过 20°C。

图 5 筒壁的边界条件示意图

Fig.5 Schematic diagram of cylinder wall boundary conditions 计算后的结构随加热时间变化,取不同时间下结 构温度云图见图 6。

Fig.6 Heat conduction cloud image of structure heated on 4 time

内壁施加辐射热时,内壁温度较高,外壁温度较 低;热量从内壁传向外壁,随着时间推移,结构温度逐

— 16 —

渐升高,且向耳片扩散。筒壁厚度方向温度分布见图 7,温度较低时,呈现出非线性分布特性;加热 60 s 后,温度逐渐趋于稳定,厚度方向呈线性分布特性。

direction of structure at different time

3 编织构件高温热环境考核

3.1 总体考核方案与环境

2.5D 编织发动机支撑结构件高温热环境考核方 案为地面富氧状态热强度石英灯加热考核。考核目 的是在模拟发动机工作高温环境下,验证 2.5D 编织 结构件能否满足发动机长时高温热环境使用要求,结 构件在高温环境是否会出现散架、结构解散不满足热 强度使用要求的情况,并获取结构件各处温度数据。 试验环境为地面富氧状态,即空气自由状态,试验件 散热通畅。热源放置在试验结构件内部,热源前端凸 出结构件端面。

3.2 加热温度换算

黑体辐射原理公式为:

$$E = \xi \delta T^4 \tag{4}$$

式中,E为辐射能量; ξ 为材料吸收率; δ 为辐射常数; T为辐射体表面温度。

结构受热最严酷位置为发动机喉部,直径为 33 mm,热源为 Q_1 ,温度为 1 400°;加热棒外缘直径为 62 mm,热源为 Q_2 。试验中要求保证热源对试验件提供能量一致,即:

$$Q_1 = Q_2 \tag{5}$$

$$Q_1 = E_1 S_1 = \xi \delta (1400 + 273)^4 \times h \times \pi \times R_{33}$$
 (6)

$$Q_2 = E_2 S_2 = \xi \delta (T + 273)^4 \times h \times \pi \times R_{62}$$
(7)

得到:T=1 155℃。

3.3 热源形状、加热温度确定及试验件安装

采用石英灯辐射方式加热,并采用热能转换方式进 行加热试验。加热热源主体为圆柱形,外径 Ф62 mm,热 源壁厚 1 mm,外壁涂黑处理,考虑到试验过程中温度的 控制,加热温度 1 150℃,试验加热温度控制点在加热工 装内壁轴向中间位置,试验加载方式见图 8。

宇航材料工艺 http://www.yhclgy.com 2017 年 第4期

Fig.8 Test loading mode

热源放置在试验结构件内部,热源前端凸出结构 件端面,结构件下端安装固定,试验件无外部负载。 试验件安装状态见图9。

图 9 试验件安装图

Fig.9 Installation of the test piece

3.4 温度测点布置

试件温度测点共7个,编号及位置见图10。

图 10 试验件温度测点图 Fig.10 Temperature measuring point drawing of test

3.5 构件高温热试验考核结果

试验控制器程序为:0~40 s,结构件加热温度从 室温增加到1150℃;保温40~300 s。加热过程中, 发动机支撑结构件在试验进行到40 s时开始大面积 出现烟雾,并有局部火苗,主要集中在圆柱形金属筒 外缘。大面积着火一直持续约80 s后熄灭,之后基 本无明火,但一直有物质蒸发冒烟。试验中产品状态 见图11。

— 17 —

图 11 热结构件加热过程烧蚀状态 Fig.11 Ablation state of thermal structure heating process

试验后进行试验件烧蚀状态检查,发动机支撑结构件表面已严重炭化,只剩下碳纤维编织机体,厚度明显变薄,绝大部分树脂已蒸发、燃烧炭化,发动机支撑结构件刚度、强度变弱。试验后产品烧蚀状态见图 12。

Fig.12 Ablation state of the structure after test 发动机支撑结构件试验中各测点温度测量数据 见图 13。

图 13 试验温度测点数据

Fig.13 Test temperature measuring point data

从结构件上的温度测点图可以得出以下结果。

(1)各测点数据变化较平稳,发动机支撑结构件 热强度试验中,内壁最高温度为950℃。

(2)试验开始 192 s前基本都处于发动机支撑结构机体温升过程,同时温度数值波动较大,这主要是发动机支撑结构燃烧着火引起;192 s之后各测点温度基本处于稳定状态,这与发动机支撑结构不再燃烧只有部分蒸发烟雾有关。

考核试验是在地面富氧状态下进行的,因而发动 机支撑结构在试验中出现着火燃烧,从而加快了发动 机支撑结构的烧蚀,而在真实飞行的真空状态下没有 氧气,发动机支撑结构不会燃烧,树脂只会挥发、炭 化,同时发动机支撑结构受热也只是局部的,重点在 发动机喉部和喷口末端,因此,试验为极限考核状态, 较真实使用状态要严酷很多。但从试验后结构件检 查和静力试验验证来看,高温热环境作用后的发动机 支撑结构仍能承载使用要求载荷,能够达到设计要 求,证明使用 2.5D 编织的碳纤维复合材料构件在质 量较金属材料减轻 50%以上的情况下,仍能满足工 程力热一体化功能需要。

4 热强度试验与有限元计算结果对比

对图 13 中试验数据进行分析,测点 T_2 和 T_3 的 变化比较有规律,数据可靠性比较高,采用这两点的 数据对分析模型进行修正。分析数据特征发现,加热 的时间起点约为 32 s 时刻,在 200 s 时刻以后温度数 据趋于稳定。

对试验工况进行有限元分析,见图 14,有限元计 算结果和试验实测值较吻合,误差在 10%以内,表明 有限元分析模型具有较高精度,计算方法正确,修正 参数选取合理,能够指导实际工程使用。

Fig.14 Comparison of finite element analysis results with experimental data

5 结论

通过对 2.5D 编织工艺生产制造的发动机支撑结构进行的高温热传导过程分析、地面考核方案设计和 验证研究,验证了采用该工艺制造的新型结构抗高温 使用环境能力。

(1)得到了碳纤维复合材料 2.5D 编织工艺+高 温树脂制造的薄壁结构件,在富氧状态下,能够适应 加热器 1 150℃、壁面 950℃高温环境长时间使用要 求。最终主体结构不会散架,能够在具有热冲刷环境 中使用。

(2)通过高温热强度试验证明:2.5D 编织工艺制造的结构件高温性能主要取决于树脂的高温性能。 提高树脂的高温分解性能、快速炭化能力是提高碳纤维复合材料结构件高温性能的主要途径。

(下转第36页)

宇航材料工艺 http://www.yhclgy.com 2017 年 第4期

— 18 —

nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites[J]. Composites Part B Engineering, 2012, 43(1):44-49.

[7] 崔小明. 特种工程塑料 PEEK 的开发与应用[J]. 工 程塑料应用, 2004, 32(10):63-66.

[8] 吴忠文. PEEK 类树脂的国际、国内发展历程及新进展[J]. 化工新型材料, 2010, 38(12):1-4.

[9] 祝世洋, 张云鹤, 李庆伟,等. 静电粉末喷涂法制备 不同熔融指数 PEEK 涂层的机械和摩擦学性能[J]. 高等学校 化学学报, 2014, 35(5):1075-1079.

[10] ZHANG C, ZHANG G, VINCENT J I, et al. Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process [J]. Progress in Organic Coatings, 2011, 66(3):248-253.

[11] PATEL K, DOYLE C S, JAMES B J, et al. Valence band XPS and FT-IR evaluation of thermal degradation of HVAF thermally sprayed PEEK coatings[J]. Polymer Degradation & Stability, 2010, 95(5):792-797.

[12] ZHANG G, LEPAROUX S, LIAO H, et al. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate[J]. Scripta Materialia, 2006, 55(7):621-624.

[13] ZHANG G, GUESSASMA S, LIAO H, et al. Investigation of friction and wear behaviour of SiC-filled PEEK coating using artificial neural network [J]. Surface & Coatings Technology, 2006, 200(8):2610-2617.

[14] ZHANG G, LI W Y, CHERIGUI M, et al. Structures and tribological performances of PEEK (poly-ether-ether-ketone) - based coatings designed for tribological application [J]. Progress in Organic Coatings, 2007, 60(1):39-44.

[15] SHAN C X, HOU X, CHOY K L. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles [J]. Surface & Coatings Technology, 2008, 202(11):2287-2291.

[16] HEDAYATI M, SALEHI M, BAGHERI R. Tribological and mechanical properties of amorphous and semi-crystalline PEEK/SiO₂ nanocomposite coatings deposited on the plain carbon steel by electrostatic powder spray technique[J]. Progress in Organic Coatings, 2012, 74(1):50-58.

(上接第18页)

(3)有限元与工程热强度试验考核的一致性,证 明热强度试验中各项补偿条件和参数选取合理。同 时,针对此类回转体薄壁结构,有限元计算具有较高的 置信度,可以使用分析仿真的方法直接指导工程应用。

参考文献

[1] 吴德隆,沈怀荣. 纺织结构复合材料的力学性能[M]. 长沙:国防科技大学出版社,1998.

[2]肖丽,华杨桂.三维编织多功能结构复合材料的发展 [J]. 复合材料学报,1994,6(2).21-27.

[3] 严实.三维四向编织复合材料的力学性能研究[D]. 哈尔滨工业大学工学,2007.

[4] Levent Onal Sabit Adanur 对二维编织复合材料弹性、

热、强度及失效分析模型的评论[J]. 力学进展,2008,38(4): 502-514.

[5] 李嘉禄, 孙颖, 李学明. 二步法方型三维编织复合材 料力学性能及影响因素[J]. 复合材料学报,2004,21(1):90-94.

[6] 卢子兴, 杨振宇, 李仲平. 三维编织复合材料力学行 为研究进展[J]. 复合材料学报,2004, 21(2):1-7.

[7] 李嘉禄,杨红娜,寇长河.三维编织复合材料的疲劳 性能[J].复合材料学报,2005,22(4):172-176.

[8] 杨红娜.三维编织复合材料接骨板的力学性能研究与设计[D]. 天津工业大学,2002.