新材料新工艺・

PICA-X 的制备及其炭化前后性能研究

贾献峰 王际童 龙东辉 乔文明 凌立成

(华东理工大学化学工程联合国家重点实验室,上海 200237)

文 摘 采用不同浓度热塑性酚醛树脂溶液浸渍莫来石纤维毡,经过溶胶-凝胶反应和常压干燥后,制备 出酚醛浸渍陶瓷烧蚀体(PICA-X,0.45~0.50 g/cm³),后研究了其炭化前后微观形貌、力学、隔热及抗氧化性 能。结果表明:PICA-X 具有莫来石纤维增强酚醛气凝胶复合结构,其弯曲强度为 26.7~34.0 MPa,热导率为 36~40 mW/(m·K)。经过1000℃炭化后,C-PICA-X 的弯曲强度为 13.9~14.5 MPa,热导率为 41~45 mW/(m ·K);PICA-X 炭化前后均表现出较好的抗氧化性能。

关键词 PICA-X,炭化,力学性能,隔热性能

中图分类号:TB332

DOI:10.3969/j.issn.1007-2330.2016.06.009

Preparation and Properties of PICA-X Before and After Carbonization

JIA Xianfeng WANG Jitong LONG Donghui QIAO Wenning LING Licheng (State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237)

Abstract Phenolic impregnated ceramic ablator (PICA-X) were prepared by impregnation of novolac phenolic resin solutions into mullite fiber mat, followed by so-gel reaction and ambient drying. The density of the PICA-X could be adjusted in a range of 0.45 to 0.50 g/cm³ by using different concentrations of novolac phenolic resin solutions. The microstructure, mechanical property, thermal insulation property and thermal stability of PICA-X before and after carbonization were systematically investigated. PICA-X, which are composed of phenolic aerogel reinforced by mullite fiber, exhibit excellent mechanical strength of 26.7 to 34.0 MPa and low thermal conductivity of 36 to 40 mW/(m·K). After carbonization at 1 000°C, the flexural strength and thermal conductivity of the resulting C-PICA -X are 13.9 to 14.5 MPa and 41 to 45 mW/(m·K), respectively. In addition, PICA-X exhibits good oxidation resistance before and after carbonization.

Key words PICA-X, Carbonization, Mechanical property, Thermal insulation property

0 引言

热防护系统(TPS),是用来保护空间飞行器在气动加热环境中免遭烧毁和过热的结构^[1]。通常应用于热防护系统有两种类型的热防护材料:可重复使用的防热材料及烧蚀防热材料。其中,烧蚀防热材料通过相变和物质消耗起到防热作用,利用防热材料在高温下热解后的气化产物和碳层来散热,其最大优点是安全可靠,适应外部加热变化的能力强,并可承受高焓高热流。

酚醛浸渍碳烧蚀体(PICA)是一种新型烧蚀热防

护材料,该材料最早由 NASA 的 Ames 研究中心在 20 世纪 80 年代开发、FMI 公司制造,率先应用于 Stardust 返回舱迎风面的热防护系统^[2-5]。随着对 PICA 材料 不断的研究和发展,NASA 的 Ames 研究中心在 Hypersonics 计划中开发了致密化的 PICA^[6]。NASA 通过对 原始 PICA 的酚醛浸渍工艺进行改进而得到密度约为 0.48 g/cm³的防热材料。2011年,NASA 与私人太空探 索公司 Space-X 合作,将改进型的金黄色 PICA-X 确 定为 Dragon 太空飞船的热防护材料^[7]。其纤维增强 体由碳纤维毡转变为陶瓷纤维毡,同时提高了酚醛的

— 46 —

收稿日期:2016-03-14;修回日期:2016-07-22

作者简介:贾献峰,1989年出生,博士研究生,主要从事 PICA 材料的相关研究。E-mail: jiaxfecust@163.com

浸渍量。因此,PICA-X具有更高的强度、更低的热导率以及优异的高温抗氧化性能。

目前,有关 PICA-X 的制备及性能研究未见报 道。本文在制备 PICA 的工作基础之上^[8],通过选取 莫来石纤维毡作为增强体,热塑性酚醛树脂溶液作为 浸渍液,制备出酚醛浸渍陶瓷烧蚀体(PICA-X),并 系统考察了 PICA-X 炭化前后的密度、微观形貌、力 学性能、隔热性能和抗氧化性能。

1 实验

1.1 原料

热塑性酚醛树脂溶液(PF,自制);莫来石纤维毡(市售,密度约为0.14 g/cm³)。

1.2 仪器设备

电子天平,上海梅特勒一托利多国际股份有限公司;电热鼓风干燥箱,上海一恒科学仪器有限公司;不 锈钢模具,定制;箱式炭化炉,中科院上海光学精密机 械研究所; NOVA Nano SEM450,美国 FEI 公司; CMT4204 电子万能试验机,美特斯工业系统有限公 司;HFM436 热流导热仪,德国耐驰公司; SDT Q600 热重分析仪,美国 TA 公司。

1.3 试样制备

将大小为 150 mm×150 mm×10 mm 的莫来石纤 维毡置于不锈钢模具中,浸渍不同浓度的热塑性酚醛 树脂溶液(质量分数分别为 30wt%、35wt%),密闭后 置于 80℃下,经溶胶-凝胶反应成型,再经过 2 d 老 化、常压干燥工艺制备得到 PICA-X;将样品置于箱 式炭化炉中,在惰性气体保护下,经过 1 000℃处理得 到炭化后的 C-PICA-X。所得试样分别记为 PICA-X-x 和 C-PICA-X-x,其中 x 为酚醛树脂浸渍液的浓 度。图 1 为 PICA-X 制备工艺流程图。

图 1 PICA-X 制备工艺流程图

Fig.1 Preparation process flow of PICA-X

1.4 测试表征

测量试样的大小和质量,根据计算公式 $\rho = m/V$ 得到复合材料密度,其中 m 为材料的质量,V 为材料 的体积;采用 NOVA Nano SEM450 观察复合材料的 微观形貌;按照 GB/T-1449—2005 进行复合材料弯 曲性能测试;热流法测试复合材料(z 轴方向)在室温 (25℃)、空气条件下的热导率;抗氧化性能测试是在 空气氛围下以 10℃/min 的升温速率升至 800℃,得 到复合材料的 TGA 曲线。

2 结果与讨论

2.1 PICA-X 制备及炭化

宇航材料工艺 http://www.yhclgy.com 2016 年 第6期

莫来石纤维毡具有高强度、低热导率、高温稳定性 和优异的抗热震性能,在高温热防护领域有着广泛的 应用前景。图 2 为莫来石纤维毡的宏观照片及 SEM 图。从图中可以发现,莫来石纤维毡表现出较好的柔 性,更容易制备出大尺寸的防热材料;纤维之间存在着 微米级孔隙,有利于热塑性酚醛树脂溶液的浸渍。

图 2 莫来石纤维毡的宏观照片及 SEM 图 Fig.2 Photograph and SEM image of mullite fiber mat 图 3 为 PICA-X 和 C-PICA-X 的宏观实物图。 可以看出,经常压干燥得到的 PICA-X 无明显的体积 收缩;炭化后,C-PICA-X 的宏观结构上没有产生明 显的裂痕,能够较好的保持炭化前的宏观形貌,酚醛

图 3 PICA-X 和 C-PICA-X 的宏观实物图

Fig.3 Photograph of PICA-X and C-PICA-X

PICA-X 的基本物理特征参数详见表 1。

表1 PICA-X 基本物理特征参数

Tab.1 Characteristic parameters of PICA-X

树脂浓度/ wt%	酚醛气凝 胶含量/%	PICA-X 密 度/g·cm ⁻³	C-PICA-X 密度/g·cm ⁻³	成碳率/ %
30	61	0.45	0.43	73
35	66	0.50	0.51	70

从表1可以看出,随着树脂浓度由30wt%增加到35wt%,PICA-X中酚醛气凝胶含量从61%增加至66%,密度从0.45增加到0.50g/cm³。在炭化过程中,PICA-X中莫来石纤维基本保持不变,酚醛气凝胶发生物理化学分解,形成炭气凝胶。PICA-X具有较高的成碳率,为70%~73%;由于酚醛气凝胶在炭化过程中会产生一定量的收缩,使其与莫来石纤维的复合结构PICA-X在z轴方向上出现了线性收缩;C-PICA-X的密度为0.43~0.51g/cm³。

2.2 PICA-X 炭化前后的微观形貌

以 PICA-X-30 为例观察 PICA-X 的微观形貌,如

— 47 —

图 4 所示 SEM 图。由图可知,PICA-X-30 中莫来石纤 维毡的内部孔隙被大量的酚醛气凝胶进行有效的填 充,莫来石纤维与酚醛气凝胶之间结构紧凑,复合界面 作用得到提高;同时,酚醛气凝胶颗粒堆积而成的三维 网络结构,骨架结构致密。因此,PICA-X 具有莫来石 纤维增强酚醛气凝胶复合结构。图 5 为 C-PICA-X-30 的 SEM 图。可以看出,C-PICA-X-30 中碳气凝胶 仍能紧密的填充在莫来石纤维的孔隙中,并没有发生 高温剥离现象,很好的保持了两者的界面结合作用;从 图 5(b)中发现,形成的碳气凝胶微观结构不同于酚醛 气凝胶,是一种类似纤维状的三维网络结构。这可能 是由于酚醛气凝胶粒子在高温中进一步反应、裂解,气 凝胶粒子质量减少、粒径变小,同时相邻气凝胶粒子之 间发生了一定程度的高温熔并现象。

图 4 PICA-X-30 的 SEM 图 Fig.4 SEM images of PICA-X-30

图 5 C-PICA-X-30 的 SEM 图 Fig.5 SEM images of C-PICA-X-30

2.3 PICA-X 炭化前后的力学性能

— 48 —

图 6 为 PICA-X 炭化前后的弯曲应力-应变曲 线。由图 6 可知,在应力-应变的初始阶段,PICA-X 经历了一段弹性形变;在达到最大屈服后,应力迅速 降低,PICA-X 发生脆性断裂。然而,C-PICA-X 在 达到最大屈服后,随着应变继续增加,应力并没有突 然降低,表现出一定的断裂韧性;此时,虽然复合结构 已经遭到破坏,但是由于 C-PICA-X 中莫来石纤维 之间的桥连接作用使其还能继续承受一定的应力。 PICA-X 炭化前后表现出不同的断裂行为,其原因在 于炭化前后微观结构的差异性:颗粒状的酚醛气凝胶 炭化后形成类似纤维状的炭气凝胶网络结构,提高了 气凝胶与莫来石纤维之间的韧性。

图 6 PICA-X 和 C-PICA-X 的弯曲应力—应变曲线

Fig.6 Flexural stress-strain curves of PICA-X and C-PICA-X

PICA-X和C-PICA-X弯曲性能的具体结果列 入表 2。随着酚醛浸渍液浓度由 30wt%增加到 35wt%,PICA-X的弯曲强度从 26.7 MPa 提高到 34.0 MPa,弯曲模量由 7.08 升高至 8.43 GPa。由于在炭化 过程中 PICA-X产生一定量的微观孔隙缺陷,因而 C -PICA-X 的弯曲强度有所降低,C-PICA-X 弯曲强 度最高可达 14.5 MPa;C-PICA-X 的弯曲模量降低至 2.77 GPa,说明 PICA-X 形成的碳层具有较好的韧 性。

表 2 PICA-X 和 C-PICA-X 的弯曲性能

Tab.2 Flexural properties of PICA-X and C-PICA-X

样品	弯曲强度/MPa	弯曲模量/GPa
PICA-X-30	26.7	7.08
PICA-X-35	34.0	8.43
C-PICA-X-30	13.9	2.77
C-PICA-X-35	14.5	3.27

2.4 PICA-X 炭化前后的隔热性能

莫来石的主要化学成分是 Al₂O₃-SiO₂二元化合物,相比于碳纤维毡,莫来石纤维毡具有更优异的隔热性能;同时,酚醛气凝胶引入到莫来石纤维毡的孔隙中,将赋予 PICA-X 优异的隔热性能。图 7 给出了 PICA-X 和 C-PICA-X(z 轴方向)的热导率。

Fig.7 Thermal conductivities of PICA-X and C-PICA-X 宇航材料工艺 http://www.yhclgy.com 2016 年 第6期

PICA-X 具有低的热导率,随着密度的增加,热导率略有增加,其值为 36~40 mW/(m·K)。经过炭化后,由于炭气凝胶具有相对较高的热导率,导致 C-PICA-X 的热导率比 PICA-X 略有提高,C-PICA-X 热导率值为 41~45 mW/(m·K)。

2.5 PICA-X 炭化前后的抗氧化性能

PICA-X和C-PICA-X在空气条件下的热重曲 线如图 8 所示,可以看出,PICA-X在100~200℃有 少量的失重,主要是由于材料表面吸附的水分以及气 体挥发造成的;PICA-X失重 5%的热分解温度为 350℃;随着温度进一步升高,PICA-X中的酚醛气凝 胶在空气条件下的氧化分解反应加剧,质量分数下 降,而此过程中莫来石纤维毡基本保持不变,说明 PI-CA-X具有较好的抗氧化性能。同时发现,C-PICA-X失重 5%的热分解温度为 550℃,最终产物的剩余 量约为 50%,表明 PICA-X 形成的碳层仍然表现出较 高的抗氧化性能。

3 结论

以热塑性酚醛树脂溶液为浸渍液,莫来石纤维毡 为增强体,经溶胶-凝胶反应和常压干燥工艺成功制 备出密度为 0.45~0.50 g/cm³的酚醛浸渍陶瓷烧蚀体 (PICA-X)。PICA-X 具有莫来石纤维增强酚醛气凝 胶复合结构,这种独特的结构赋予 PICA-X 在炭化前 后兼具较高的力学性能和优异的隔热性能,同时表现 出较好的高温抗氧化性能;PICA-X 弯曲强度为 26.7 ~34.0 MPa,热导率为 36~40 mW/(m·K);C-PICA-X 弯曲强度为 13.9~14.5 MPa,热导率为 41~45 mW/(m·K)。PICA-X 在烧蚀隔热一体化热防护系统领 域有着极大的应用前景。

参考文献

[1] LAUB B, VENKATAPATHY E. Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, October 6–9,2003 [C]. Netherlands; ESA Publications Division, 2004.

[2] TRAN H, JOHNSON C, RASKY D, et al. 31st Thermophysics Conference, June 17–20, 1996[C].Reston: American Institute of Aeronautics and Astronautics, 1996.

[3] TRAN H, JOHNSON C, HSU M T, et al. 32nd Thermophysics Conference, June 23–25, 1997[C].Reston: American Institute of Aeronautics and Astronautics, 1997.

[4] WILLCOCKSON W H. Stardust sample return capsule design experience [J]. Journal of Spacecraft and Rockets, 1999, 36 (3):470-474.

[5] MILOS F S, CHEN Y K. Ablation and thermal response property model validation for phenolic impregnated carbon ablator [J]. Journal of Spacecraft and Rockets, 2010, 47(5): 786-805.

[6] JOHNSON S M, GASCH M J, LEISER D, et al. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, April 28–May 1,2008[C]. Reston: American Institute of Aeronautics and Astronautics,2008.

[7] NOWLIN S, THIMONS L. Surviving the heat: the application of phenolic impregnated carbon ablators [C/OL].(2013-02 -01) [2016-02-26]. http://136.142.82.187/eng12/history/ spring2013/pdf/3131.pdf.

[8] 贾献峰,刘旭华,乔文明,等.酚醛浸渍碳烧蚀体(PICA) 的制备、结构及性能[J].宇航材料工艺,2016,46(1):77-80.