柔性AgNWs/ITO/WO3薄膜的制备及其电致变色性能

王天悦! 王顺花! 王梦颖² 黄庆姣³ 刁训刚²

(1 兰州交通大学材料科学与工程学院,兰州 730070)
(2 北京航空航天大学能源与动力工程学院,北京 100191)
(3 北京航空航天大学物理学院,北京 100191)

文 摘 为适应电致变色领域越来越丰富的柔性化需求,解决柔性基底上直接制备电致变色薄膜性能不佳的问题。以聚对苯二甲酸乙二醇酯(PET)/银纳米线(AgNWs)为基底,采用室温直流反应磁控溅射制备了氧化铟锡(ITO)/氧化钨(WO₃)薄膜,研究了AgNWs/ITO复合电极的光电性能以及PET/AgNWs/ITO/WO₃薄膜的电致变色性能。结果表明,通过加镀ITO过渡层,克服了PET/AgNWs/WO₃薄膜存在的着色不均匀、单次循环后性能迅速衰退等问题。最终获得了透过率调制为57.4%(550 nm 处)、69.6%(1000 nm 处),着褪色响应时间分别为10.4 s和9.9 s,相应的着褪色效率分别为27.79 cm²/C和40.45 cm²/C 的高性能柔性电致变色薄膜。薄膜 在超过500次循环稳定测试以及2000次弯折测试后仍能保证较高的透过率调制,展现出了在柔性电致变色

关键词 电致变色,柔性,氧化铟锡,银纳米线 中图分类号:TB34 DOI:10.12044/j.issn.1007-2330.2021.01.011

Preparation and Electrochromic Properties of Flexible AgNWs/ITO/WO₃ Films

WANG Tianyue¹ WANG Shunhua¹ WANG Mengying² HUANG Qingjiao³ DIAO Xungang²

(1 School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070)

(2 School of Energy and Power Engineering, Beihang University, Beijing 100191)

(3 School of Physics, Beihang University, Beijing 100191)

Abstract To solve the problem of poor performance of electrochromic films, which is the critical problem of electrochromic devices adapting to the current demand, the indium-tin oxide (ITO)/tungsten oxide (WO₃) films were prepared at room temperature by DC reactive magnetron sputtering on the polyethylene terephthalate (PET)/silver nanowire (AgNWs). The photoelectric properties of AgNWs/ITO composite electrodes and the electrochromic properties of PET/AgNWs/ITO/WO₃ films were investigated. The results show that the sheet resistance of the ITO-compositing electrode is significantly lower than that of AgNWs electrode, and the surface is more uniform and smoother. Thereby it overcomes the uneven coloring and rapid performance degradation after a single cycle of the WO₃ film. The transmittance modulation of the flexible electrochromic film is 57. 4% (at 550 nm) and 69. 6% (at 1 000 nm), the colored and bleached response time is 10. 4 s and 9.9 s, while the corresponding colored and bleached efficiency is 27. 79 cm²/C and 40. 45 cm²/C, respectively. In addition, the film can still maintain high transmittance modulation after more than 500 cycle stability tests and 2 000 bending tests, showing great application potential in the field of flexible electrochromic.

Key words Electrochromic, Flexibility, Indium-tin oxide, Silver nanowires

0 引言

电致变色是指材料的光学性能(透过率、吸收 率、反射率等)在电场驱动下发生可逆变化的现 象^[1-2],其在信息显示、汽车后视镜防眩目、建筑装饰、航天器表面热控、军事伪装等领域有着广泛的应用。尽管普鲁士蓝^[3-4]、二氧化钛^[5-6]和钛酸锂^[7-8]这

收稿日期:2020-04-06

基金项目:国家自然科学基金项目(51862022、61875005)

第一作者简介:王天悦,1994年出生,硕士研究生,主要研究方向为电致变色材料与器件。E-mail:oceanwty@126.com

些电致变色材料的研究热度在逐步升温,但是氧化 钨依然是当下电致变色研究中最有应用前景的选 择^[9]。随着这些年聚合物为基底的曲面幕墙玻璃、类 变色龙织物、电子标签等新需求的兴起,使电致变色 柔性化的关注度越来越高^[10]。柔性基底不仅可以拓 展原本刚性基底上电致变色材料无法触及的应用方 向,还可以大大增加设计的自由性,所以在聚合物基 底上制备出不逊于刚性基底的电致变色材料成为一 个亟待解决的问题。

商业上较为成熟的柔性PET/AgNWs拥有极高的透 过率和优异的弯折性能,这对于柔性透射器件的制备 至关重要。但由于依赖疏松银线铺展形成的高透过率 薄膜存在方块电阻过大、镀膜易局部短路等问题^[11-12], 直接在其上镀制的WO₃薄膜难以均匀变色。此外,传 统刚性ITO电极拥有极高的电导率和透过率兼容性,并 且有着成熟的商业化制备条件。但将其应用在柔性可 穿戴电子设备中存在着许多问题,比如机械性能差、与 柔性基底的结合力不足等^[12]。 本文通过优化结合 AgNWs 和 ITO 这两种电极, 研究 ITO 溅射参数与 AgNWs/ITO 复合电极光电性能 之间的关系,制备出表面平整、方阻较低、透过率较 高的柔性基底。最后,在最优性能的基底上制备 PET/AgNWs/ITO/WO3电致变色薄膜,解决在 PET/ AgNWs上直接镀膜导致的局部短路而引起的难以正 常变色问题,以及刚性 ITO 弯折易断裂而引起的电致 变色性能快速衰退的问题,拟为电致变色材料在柔 性场景中的应用提供参考。

1 实验

1.1 柔性AgNWs/ITO/WO₃薄膜的制备

使用直流磁控溅射在PET/AgNWs上制备ITO和WO₃薄膜。ITO靶材(河北东同光电科技有限公司)的直径为10 cm, In₂O₃与SnO₂的质量比为9:1。W靶材(河北东同光电科技有限公司)直径为10 cm,纯度为99.9%。基底均为PET/AgNWs(中国乐凯集团有限公司研究院),靶材与基底的距离为20 cm,本底真空为3 mPa,其他制备参数见表1。

表 1 AgNWs/ITO/WO₃薄膜的制备参数¹⁾ Tab. 1 Preparation parameters of AgNWs/ITO/WO₃ thin film¹⁾

target	sputtering time/min	sputtering pressure/Pa	sputtering atmosphere Ar : O_2	sputtering power /W
ΙΤΟ	0,10,20,40	0.3	273 : 8	195
	20	0.3,0.5,0.7	273 : 8	195
	20	0.3	273 : 4,273 : 6,273 : 8,273 : 10,273 : 12	195
	20	0.3	273 : 8	108,152,195,240
W	10	2.0	30:10	300

注:1)采用直流电源。

1.2 柔性AgNWs/ITO/WO₃薄膜的表征

ITO 薄膜的厚度由 Bruker DektakXT 台阶仪测量,方块电阻由苏州晶格电子有限公司 ST-2258C型 四探针测试仪测量。使用荷兰 PANalytical 公司 X' Pert PRO型X 射线衍射仪以恒定掠射入射角(0.2°) 测定 ITO 薄膜晶体结构,并用日立公司 S-4800场发 射扫描电子显微镜对薄膜的表面形貌进行表征。

样品电致变色性能通过CHI 660E 电化学工作站 与 MAPADA UV-1600 型紫外-可见分光光度计联 用,进行原位电化学和透过率测量,测试时采用三电 极配置,分别以 PET/AgNWs/ITO/WO₃作为工作电极、 Ag/AgCl作为参比电极、Pt 箔作为对电极、1M LiClO₄/ PC溶液作为电解质。

2 结果与讨论

2.1 XRD分析

图1给出了在PET/AgNWs上制备的不同溅射时间、 气压、气氛和功率的XRD图谱。可以看出图中除了明 显的PET/AgNWs背景峰外观察不到其他明显的衍射峰, 因此可以认为磁控溅射制备的ITO薄膜为非晶的或者 说低结晶度的。不过值得一提的是,除了溅射气氛外, 背景峰强随溅射时间、气压和功率的变化均有不同程 度的增强或减弱。由于固定入射角的X射线所能穿过 的厚度大致在一定的范围,所以ITO的厚度、微晶数量 的变化都可能成为背底峰强变化的原因^[13]。具体来说, 更长的溅射时间必定沉积出更厚的薄膜,从而削弱了 背景峰强;而随着溅射功率的增加,从气体电离出的轰 击粒子能量提高,靶材粒子到达基底时动能增大,从而 使薄膜内部出现了更多微晶颗粒,也使得背景峰强随 功率上升而下降;至于衍射峰随气压的巨大变化,可能 是以上两方面综合影响的结果,因为过高的溅射气压

— 69 —

会使溅射出的粒子平均自由程增高,减缓沉积速率的 同时提高了薄膜疏松度。

2.2 SEM分析

图 2 中的 SEM 图像显示了在 500 nm 尺度下不同 溅射时间的 AgNWs/ITO 薄膜的表面形貌。

(c) AgNWs+20 min ITO (d) AgNWs+40 min ITO

不同的溅射时间改变了 AgNWs/ITO 的表面和厚度,所有沉积了 ITO 薄膜的表面都是致密而均匀的,没有出现明显的缺陷。从图 2(a)可以看出原始AgNWs 的分布较为稀疏,由于银线并未将 PET 基底完全覆盖,所以其有着较高的透过率,但这也使其方块电阻很低。在图 2(b~d)上都或多或少的存在山脉状的纹路,这可能是因为镀膜时部分银线充当了结构诱导因子^[14],使其上方的 ITO 保持了相同的生长方向。随着镀膜时间的增加,薄膜表面上形成的"山脉"逐渐平整,这有利于电致变色层的制备^[15]。由于其他溅射条件的改变并未造成薄膜表面形貌的明显变化,这里就不再给出。

2.3 AgNWs/ITO复合电极的光电性能分析

透明导电材料的光电性能主要从导电性、透过 率两方面来考察。值得一提的是,除了直接对这两 个性能进行评估,还引入电导与光导之比,定量计算 了薄膜的光电性能,即FOM值^[12,16-17],具体计算公式 如下:

FOM= σ_{dc}/σ_{opt} =188.5/[$R_s \times (1/T^{1/2}-1)$] (1) 式中,T为550 nm 处的光学透过率, R_s 为透明导电膜的方块电阻。

图 3 是 AgNWs/ITO 复合电极溅射时间与方块电 宇航材料工艺 http://www.yhclgy.com 2021年 第1期

-70 -

阻、透过率之间的关系,可以看出加镀ITO的复合电极的方块电阻从418.3 Ω/sq显著降低至35.3 Ω/sq。 但透过率有一定程度上降低。就可见光区而言,在 人眼最敏感的550 nm处,透过率从84.8%(0)降至 75.4%(40 min)。从原始银线基底到加镀40 min ITO 的复合膜,计算所得的 FOM 值分别为:5.3、17.1、 30.7和33.1,即随着溅射时间的增加,复合膜的光电 性能呈上升趋势,但随着厚度增加,这种提高变缓。

图 3 溅射时间与其方阻、透过率的关系 Fig. 3 Sheet resistance and transmittance of AgNWs/ITO films as a function of sputtering time

从图4可以看出,随着气压从0.3 Pa增加到0.7 Pa,方块电阻从35.3 Ω/sq急剧增加至761 Ω/sq,透过率几乎没有变化。相应的FOM值分别为:30.7、5.4 和1.37,即随着溅射气压的增加,复合膜的光电性能大幅度降低。这是因为在磁控溅射中,气压的变化

不仅会影响薄膜的结晶性、致密度,还同时影响着镀 膜时的沉积速率^[18]。更高的溅射气压会使薄膜更加 疏松,溅射速率更慢,这显然不符合电极材料所需的 高致密度和一定的厚度。

图4 溅射气压与其方阻、透过率的关系

图5表征了溅射气氛对薄膜光电性能的影响,即随着氧分压的增大,方块电阻整体呈现上升趋势,从最低的33.2 Ω/sq到Ar:O₂=273:12时的216.8 Ω/sq。与此同时,透过率变化呈现了相反的趋势,在550 nm 处,从最低的62.9%上升到73.1%。使用本身导电性优良的含氧ITO靶材镀膜,增加的氧分压会使ITO 中氧空位减少,从而降低其电学性能^[19]。但另一方面而言,氧分压的改变会使ITO光学带隙发生变化, 从而影响其透过率。不同氩氧比下的FOM值分别 宇航材料工艺 http://www.yhclgy.com 2021年 第1期 为:24.4、17.8、30.7、12.1和5.1,即在273:8处获得 最优性能的复合膜,这是逐渐降低的方块电阻和不 断上升的透过率之间的平衡点。

图6中方块电阻随溅射功率的增加从78.3 Ω/sq 降低至24.7 Ω/sq,透过率从66.3 %增加至80.6 % (在550 nm处),FOM值从10.6提高到67.0。更大的 溅射功率无疑是提高了复合膜的光电性能。这是因 为溅射功率的增加使气体分子电离程度更高,靶面 轰击更剧烈,从而增加了薄膜的厚度和结晶性^[20-21]。

-71 -

Fig. 5 Sheet resistance and transmittance of AgNWs/ITO films as a function of sputtering atmosphere

由于溅射功率的提高还会使靶面温度升高,且对于 较脆的导电陶瓷靶材潜在的击碎危险,所以无法通 过不断提高功率来改善电极的光电性能。

2.4 AgNWs/ITO/WO3薄膜的电致变色性能分析

从图7(a)中可以看出直接在银线基底上制备的 PET/AgNWs/WO₃薄膜变色过程十分不均匀(-1 V 10 s 着色),在其他金属网状电极的研究中也发现了相 同的现象^[12]。尽管施加长时间的负向电压也可以使 薄膜全部着色(-1 V 20 s 着色),但这导致了后续过 程中颜色无法褪尽,即便在更长时间下施加更大电 压(1.5 V 30 s 褪色)也是如此。在图7(b)中给出了 薄膜在计时安培法测试下的原位透过率变化,除了 第一次循环拥有较大的光学调制外,薄膜在后续循 环中性能迅速衰退,大约50个循环后就完全失效。 直接在PET/AgNWs电极上镀制的WO₃薄膜会因为基 底表面不平整的金属突起而发生局部短路,从而需 要更大的驱动电压才能使薄膜完全变色。另外,为 了兼顾透过率,银纳米线不得不空出许多区域使光 - 72 - 线透过,这是PET/AgNWs/WO3薄膜短时间着色为麻 点状的原因,也是在短暂循环后迅速衰退的原因。 因为不平整的网状电极底部难以形成平行电场,使 得电场强的区域离子注入较快而电场弱的区域离子 难以注入,宏观表现为变色不均匀,同时长时间大电 压的强行工作,会使深层氧化钨中积累部分无法抽 出的离子,宏观表现为着色后难以褪色。

图 8(a,b)是加镀 ITO 后的 AgNWs/ITO/WO₃薄膜 在±1 V 的电压下分别着褪色 15 s 的计时安培图和原 位透过率光谱图,可以看出在前 5 个循环中,电流密 度的变化与其原位透过率光谱均十分稳定。着褪色 时间和着褪色效率分别用于表征薄膜变色过程所需 时间的长短和单位电荷引起光学性质变化的强弱, 选取第 3 个循环的原位透过率光谱的数据,计算出薄 膜的着色时间为 10.4 s、褪色时间为 9.9 s,并在图 8

宇航材料工艺 http://www.yhclgy.com 2021年 第1期

(c)中拟合出薄膜着色效率为27.79 cm²/C、褪色效率 为40.45 cm²/C。这表明 AgNWs/ITO/WO₃ 薄膜拥有 较快的响应时间和较高的着色效率。图8(d)为薄膜 在±1 V电压下分别着褪色15 s后400~1100 nm 波段 的透过率光谱图,显然在可见光区(在550 nm 为 57.4%)和近红外波段(在1000 nm处为69.6%)均获 得了较大的光学调制。这与本实验室^[12-23]以及王美 涵等人^[24]使用磁控溅射制备的刚性基底WO₃性能相 当(在550 nm和600 nm处约60%的透过率调制),略 优于Nilam Y. Bhosale等人^[25]使用水热法在刚性ITO 基底上制备的WO₃(在630 nm处约50%的透过率调 制),证明柔性AgNWs/ITO/WO₃薄膜性能不逊于刚性 基底制备的同类材料。

图 9(a)为 WO,薄膜的伏安循环曲线,右下角的 插图是由着色和褪色伏安循环过程中电流密度在时 间上的积分得到的,三组分别为第1、第5和第10个 循环的注入和抽出电荷密度。其间接反应了着褪色 过程中氧化还原反应的程度。显然,着色过程注入 的电荷量通常比褪色过程抽出的要多一些,这可能 是着色过程伴随了一些副反应的发生,从而导致了 薄膜的衰退^[22,26]。图9(b)是使用多电位阶跃法测试 的同步透过率光谱图,在±1 V下以负向16 s、正向20 s进行了500次循环后,薄膜的透过率仍然保持了 40%以上的调制幅度,说明本实验制备的柔性WO₃ 薄膜具有良好的循环耐久性。

为了考察柔性WO₃的在曲面广告牌、柔性可穿 戴领域的应用前景,通过图10右下角所示的向内和 向外两种弯折方式,每100次进行一轮交替,测试了 薄膜在2000次弯折中的透过率调制变化。中部插 图展示了第1次弯折及第2000次弯折后薄膜的着褪 色照片,曲线记录了在550 nm处透过率随弯折次数 的变化趋势。可以看出,即便经历了2000次向内和 向外交替弯折,薄膜着褪色前后依然对比明显,保持 了约40%透过率调制,证明本实验所制备的AgNWs/

ITO/WO₃薄膜具有优良的弯折性能。 100 → bleaching state

3 结论

采用直流反应磁控溅射在商用银线基底上室温 先后制备了柔性 AgNWs/ITO 复合电极和 AgNWs/ ITO/WO₃电致变色薄膜。首先,通过探究溅射时间、

气压、气氛和功率对AgNWs/ITO复合电极光电性能 的影响。发现随着溅射时间的增长、气压的降低和 功率的加大,薄膜光电学性能明显改善,而溅射气氛 对薄膜光学和电学性能的影响不一致,即随着氧分 压的增大,薄膜光学性能改善而电学性能恶化。通 过调整磁控溅射参数,制备出了方块电阻为24.7 Ω/ sq、透过率为 80.6% (在 550 nm 处测得)的柔性 AgNWs/ITO 复合电极。然后,在优化后的 PET/ AgNWs/ITO柔性电极上镀制WO3薄膜,成功解决了 直接在AgNWs上镀制电致变色薄膜而导致的局部短 路问题。所制备的PET/AgNWs/ITO/WO3电致变色薄 膜在550 nm处透过率调制为57.4%,相应的着褪色 效率为 27.79 cm²/C 和 40.45 cm²/C, 着褪色响应时间 为10.4 s 和 9.9 s, 且在 500 次循环后仍保持了 40% 以上的光学调制。值得一提的是,薄膜在经过多达 2000次的弯折仍能保证较高的透过率调制。

参考文献

[1] PLATT J R. Electrochromism, a possible change of color producible in dyes by an electric field [J]. Journal of Chemical Physics, 1961, 34(3):862-863.

[2] GRANQVIST C G. Handbook of inorganic electrochromic materials[M]. Amsterdam: Elsevier, 1995.

[3] LI F, MA D, QIAN J, et al. One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device [J]. Solar Energy Materials and Solar Cells, 2019, 192:103-108.

[4] ISFAHANI V B, MEMARIAN N, DIZAJI H R, et al.宇航材料工艺 http://www.yhclgy.com 2021年 第1期

The physical and electrochromic properties of prussian blue thin films electrodeposited on ITO electrodes [J]. Electrochimica Acta, 2019, 304:282–291.

[5] ZHANG B, XU C, XU G, et al. Amorphous titanium dioxide film with improved electrochromism in near-infrared region[J]. Optical Materials, 2019, 89:191–196.

[6] SIUZDAK K, SZKODA M, SAWCZAK M, et al. Ordered titania nanotubes layer selectively annealed by laser beam for high contrast electrochromic switching [J]. Thin Solid Films, 2018, 659:48-56.

[7] LI M, GOULD T, SU Z, et al. Electrochromic properties of Li₄Ti₅O₁₂: from visible to infrared spectrum [J]. Applied Physics Letters, 2019, 115(7):073902.

[8] MANDAL J, DU S C, DONTIGNY M, et al. Li₄Ti₅O₁₂: A visible-to-infrared broadband electrochromic material for optical and thermal management [J]. Adv. Funct. Mater. ,2018,28:1802180.

[9] GRANQVIST C G, ARVIZU M A, QU H Y, et al. Advances in electrochromic device technology: multiple roads towards superior durability[J]. Surface and Coatings Technology, 2019,357:619–625.

[10] KANG W, LIN M F, CHEN J, et al. Highly transparent conducting nanopaper for solid state foldable electrochromic devices[J]. Small, 2016, 12(46):6370–6377.

[11] WU J, QUE X, HU Q, et al. Multi-length scaled silver nanowire grid for application in efficient organic solar cells [J]. Advanced Functional Materials, 2016, 26(27):4822-4828.

[12] 陈小连. 新型金属网格透明导电膜及应用研究 [D]. 中国科学技术大学,2019.

CHEN X. Research on new type metal grid transparent conductive film and its application [D]. University of Science and Technology of China, 2019.

[13] YIN X, TANG W, WENG X, et al. Surface morphology modelling for the resistivity analysis of low temperature sputtered indium tin oxide thin films on polymer substrates [J]. Journal of Physics D: Applied Physics, 2009, 42(22):225304.

[14] BATHE S R, ILLA M S, NARAYAN R, et al. Electrochromism in polymer-electrolyte-enabled nanostructured WO₃: Active layer thickness and morphology on device performance [J]. Chem. Nano. Mat. ,2018,4(2):203-212.

[15] CHEN X, GUO W, XIE L, et al. Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications [J]. ACS Applied Materials & Interfaces , 2017, 9(42): 37048-37054.

[16] HAN B, PEI K, HUANG Y, et al. Uniform self-

forming metallic network as a high-performance transparent conductive electrode [J]. Advanced Materials, 2014, 26(6): 873-877.

[17] KHAN A, LEE S, JANG T, et al. High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process [J]. Small, 2016, 12 (22):3021-3030.

[18] KIM H, HORWITZ J S, KUSHTO G P, et al. Indium tin oxide thin films grown on flexible plastic substrates by pulsedlaser deposition for organic light-emitting diodes [J]. Applied Physics Letters, 2001, 79(3):284–286.

[19] 方旭.透明导电氧化物ITO薄膜与ITO/Au复合结构的制备及光电特性研究[D].浙江大学,2016.

FANG X. Preparation of ITO thin film and ITO/Au composite structure with transparent conductive oxide and study of its optoelectronic properties [D]. Zhejiang University, 2016.

[20] HUANG M, HAMEIRI Z, ABERLE A G, et al. Influence of discharge power and annealing temperature on the properties of indium tin oxide thin films prepared by pulsed–DC magnetron sputtering[J]. Vacuum, 2015, 121:187–193.

[21] 殷学松. ITO 薄膜红外低发射率机理研究[D]. 电子 科技大学,2010.

YIN X. Study on the mechanism of low infrared emissivity of ITO thin film [D]. University of Electronic Science and Technology of China, 2010.

[22] YU H, GUO J, WANG C, et al. High performance in electrochromic amorphous WO_x film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalation[J]. Electrochimica Acta, 2019, 318:644–650.

[23] GUO J, WANG M, DIAO X, et al. Prominent electrochromism achieved using aluminum ion insertion/ extraction in amorphous WO₃ films [J]. Journal of Physical Chemistry C, 2018, 122(33):19037–19043.

[24] WANG M H, WEN J X, CHEN Y, et al. Nanostructured WO₃ thin films deposited by glancing angle magnetron sputtering [J]. Journal of Inorganic Materials, 2018, 33 (12) : 1303–1308.

[25] BHOSALE N Y, MALI S S, HONG C K, et al. Hydrothermal synthesis of WO_3 nanoflowers on etched ITO and their electrochromic properties [J]. Electrochimica Acta, 2017, 246:1112–1120.

[26] HUANG Q, ZHANG Q, XIAO Y, et al. Improved electrochromic performance of NiO-based thin films by lithium and tantalum co-doping[J]. Journal of Alloys and Compounds, 2018,747:416-422.