高压条件下Al₂O₃/Al-10Si组织演变及力学性能

张艳衡! 朱冬冬2 王 刚! 董 多2 王晓红2

(1 安徽工程大学材料科学与工程学院,芜湖 241000)

(2 衢州学院机械学院, 衢州 324000)

文 摘 采用热压烧结与高压凝固分别制备了不同压力下 $Al_2O_3/Al-10Si$ 复合材料,研究了高压对 $Al_2O_3/Al-10Si$ 复合材料的组织演变规律及力学性能的影响。结果表明,高压凝固 $Al_2O_3/Al-10Si$ 复合材料由 α 相, β 相和 Al_2O_3 强化相组成,其中 α 相呈胞状,在 α 相晶界处存在少量粒径约为 β 0.1 β 1 β 2 β 3 相识的颗粒状 β 3 相;对于不同压力下制备的复合材料性能研究发现,凝固压力增加, α 4 相中 β 3 的固溶度增加,显微硬度及拉伸强度也随之提高,显微硬度由热压烧结时的 β 5.3 HV,增加到了 β 6 GPa时的 β 8 时的 β 8 计28 相中 β 9 固溶度增加,形成了固溶强化。

关键词 高压凝固,组织形貌,凝固压力,显微硬度

中图分类号:TG394

DOI: 10.12044/j.issn.1007-2330.2020.04.013

Microstructure Evolution and Mechanical Properties of Al₂O₃/Al-10Si Composites Under High Pressure

ZHANG Yanheng¹ ZHU Dongdong² WANG Gang¹ DONG Duo² WANG Xiaohong²

(1 School of Material Science and Engineering, Anhui Polytechnic University, Wuhu 241000)

(2 School of Mechanical Engineering, Quzhou University, Quzhou 324000)

Abstract Al₂O₃/Al-10Si composites solidified with different pressures were prepared by hot pressing and high pressure solidification. The effects of high pressure on the microstructure evolution and mechanical properties of Al₂O₃/Al-10Si composites were investigated. The results show that the high pressure solidified Al₂O₃/Al-10Si composite consists of α phase, β phase and Al₂O₃ strengthening phase, and α phase is cell-like. There is a small amount of fine granular β phase with a particle size of about 0.1 μm at α phase grain boundary. The solid solubility of Si in α phase and the microhardness increases with the increasing solidification pressure. The microhardness of the hot pressed sintered material is 55.3 HV. When solidification pressure is 5 GPa, the microhardness is 128 HV and has increased by 133%, and the compressive strength has increased from 126 MPa to 702 MPa at 5 GPa, which is due to the high pressure causing an increase in the solid solubility of Si in α phase to form a solid solution strengthening.

Key words High pressure solidification, Microstructure, Solidification pressure, Microhardness

0 引言

Al₂O₃/Al-Si 复合材料,具有比强度高、热稳定性^[1-3]良好等特点,被广泛应用于航空航天、汽车和轨道交通等领域^[4-6]。随着使用范围的扩大,Al₂O₃/Al-Si 复合材料的强度和硬度不能满足日益增长的使用需求。目前的研究主要集中在改善Al-Si 合金的组织形貌或进行固溶处理^[7-9],从而获得细小均匀

的显微组织和过饱和固溶体^[10-11],以此提高力学性能来满足工业需求。

凝固反应在极端高压环境下进行,材料的熔点、密度、元素扩散系数和分配系数均发生极大改变[12-15],导致凝固组织相的构成和微观形貌发生变化,形成亚稳态结构[16-17]。因此,高压可通过影响凝固过程改变凝固组织的分布和状态,最终达到改善

收稿日期:2019-11-14

基金项目:国家自然科学基金(51801112,51501100,51704001);浙江省自然科学基金(LY18E010003,LQ20E010003);安徽省领军人才计划 (Z175050020001);安徽工程大学拔尖人才计划

第一作者简介: 张艳衡,1995年出生,硕士研究生,主要研究方向为材料加工。E-mail: zhangyh716@126. com 通信作者: 王刚,1985年出生,博士,副教授,主要研究方向为材料连接。E-mail: gangwang@ahpu. edu. cn

材料性能的目的。近年来,高压凝固已经成为一项研究热门。LI等[18]在4、5 GPa的压力制备了不同成分的Al-Si合金,发现高压虽然没有导致Al-Si生成新的相,但是Al-Si相图的共晶点随着压力升高向Si方向移动。MA等[19]研究了分别在1、2、3 GPa压力下凝固的Al-20Si的力学性能和强化机制,认为高压形成过饱和固溶体,从而产生固溶强化是主要强化机理。LIU等[20]采用高压凝固的方法制备了Al-7Si,并通过时效处理将硅相细化到纳米级,发现硅相细化可以同时提高铝硅二元合金的强度和延展性。MA等[21]研究了高压凝固 SiC_p/Al-20Si,发现 SiC 和高压的共同作用下,初生 Si 由片状转变为细纤维状。

研究表明,常压条件下,液态 Al 对于 Al₂O₃的润湿性差^[22],随着熔体流动,复合材料中的 Al₂O₃颗粒容易偏聚,导致常压条件制备 Al₂O₃/Al 复合材料工艺复杂。增加凝固压力可以提高材料界面润湿性^[23],且抑制熔体流动^[24],有利于获得成分均匀的复合材料。本文主要研究高压凝固 Al₂O₃/Al-10Si 复合材料的凝固过程及组织形貌,不仅对探索高压凝固复合材料材料组织演变规律具有重要意义,还可以开发颗粒强化铝基复合材料的应用潜力,拟为制备高性能的 Al₂O₃/Al-10Si 复合材料提供理论基础。

1 实验

采用铝粉(99.9%、80 μ m)、硅粉(99.9%、80 μ m) 和 α -Al₂O₃颗粒(20 μ m),配成名义为 Al₂O₃/Al-10Si 复合材料粉末(α -Al₂O₃颗粒为占总体积的 10%),加入酒精放入球磨机内混粉 6 h,转速为 200 r/min,蒸干后得到的均匀粉末通过液压机在冷压模具内制得

Ф9.6 mm×10 mm的素坯,包裹上绝缘圈放入叶腊石模具中密封。高压实验在HTDS-032F型六面顶压机上进行,压力到达设定值(3、4、5 GPa)后升温至1 000 ℃,保温 30 min后冷却至室温,卸压得到高压凝固试样;热压烧结试样采用JVLF211实验室真空热压烧结炉制备,真空度为1 mPa,烧结温度为555 ℃。热压与高压试样经打磨抛光后使用 0.5 %的 HF 腐蚀 20 s制得金相试样。

采用布鲁克 D8 ADVANCE 型 X 射线衍射仪 (XRD)和 Hitachi SU8010扫描电子显微镜(SEM)分别分析不同压力下凝固试样的物相及显微组织形貌;通过阿基米德排水法测试材料的密度;使用 DUH-211S 岛津动态显微硬度仪测量材料的显微硬度,为了提高结果的准确性,显微硬度值取5次结果的平均值,并将试样切割成2 mm×2 mm×4 mm的压缩试样进行压缩实验,压缩速率为0.5 mm/min,通过测试材料的显微硬度和抗压强度研究材料的力学性能。

2 结果与讨论

2.1 Al₂O₃/Al-10Si 复合材料组织形貌

图 1(a)给出了不同压力下凝固的 $Al_2O_3/Al-10Si$ 复合材料的 XRD 图谱。结果显示, $Al_2O_3/Al-10Si$ 复合材料由 $\alpha-Al$ 相、 $\beta-Si$ 相和 Al_2O_3 强化相组成,高压凝固 $Al_2O_3/Al-10Si$ 复合材料 α 相衍射峰的强度增高,且随着凝固压力的升高, α 相衍射峰的强度继续提高,衍射峰面积随之增大,即 α 相含量增加。高压凝固并没有使 $Al_2O_3/Al-10Si$ 复合材料物相组成发生改变,但改变了 α 相的体积分数。

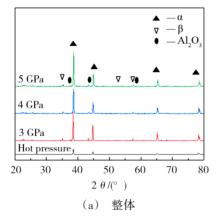


图 1 Al₂O₂/Al-10Si 复合材料 XRD图

Fig. 1 XRD spectra of Al₂O₃/Al-10Si composite

为了进一步研究高压凝固对于 α 相中 Si 固溶度的影响,采用步进扫描对 $Al_2O_3/Al-10Si$ 复合材料 α 相的衍射峰进一步分析,结果如图 1(b) 所示,随着压力的增加, α 相的衍射峰向高角度偏移。由布拉格方程

可知,波长不变的情况下,衍射角增加是由于晶体的晶面间距减小所造成的,从而说明晶格常数减小^[25-26]。而Si原子的半径小于Al原子半径,晶格常数减小,说明了更多的Si原子替换了α相中的Al原

子,即α相中Si的固溶度增加。

图 2 为不同方法制备的 $Al_2O_3/Al-10Si$ 复合材料的组织形貌。由图 2(a) 看出,热压烧结 $Al_2O_3/Al-10Si$ 复合材料由 α 相和 Al_2O_3 强化相组成,且 Al_2O_3 颗粒大多弥散分布于 α 相晶界处。由图 2(b)~图 2(d)可看出,高压凝固 $Al_2O_3/Al-10Si$ 复合材料基体组织为胞晶状的 α 相,无明显的 $(\alpha+\beta)$ 共晶组织, Al_2O_3 颗粒分布于 α 相晶界。 Al_2O_3 颗粒具有强度高、稳定性好的特点,在基体受力变形时,可承受部分载荷并抑制变形,从而提高材料力学性能。

对于亚共晶 Al-10Si 合金,在常规凝固条件下,随着凝固反应进行,液相中首先析出少量初生α-Al相,随着初生相的增加,合金到达共晶成分,液相中形成大量的(α+β)共晶相。同时在α相生长,熔体多余的Si元素在固-液界面前沿形成溶质堆积,导致凝固界面失稳,α相最终凝固形态呈枝晶状。而凝固压力变为高压,Si元素的扩散激活能增加,扩散速率减小,使α相生长时Si的析出受到抑制,凝固界面趋于稳定,晶体的生长方式逐渐等轴化,最终导致 Al₂O₃/Al-10Si复合材料α相呈胞状生长的趋势。

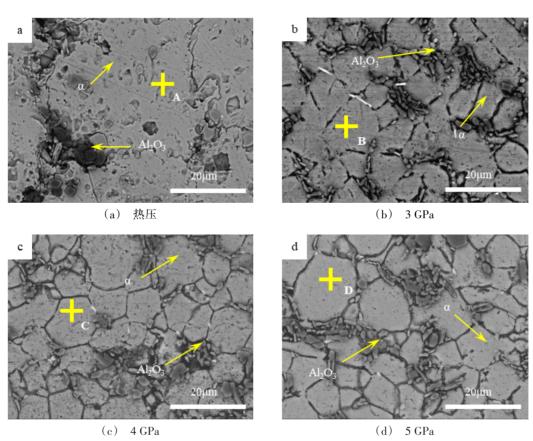
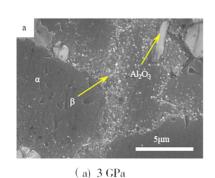
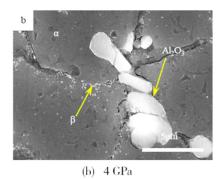


图 2 Al₂O₃/Al-10Si 复合材料组织形貌 Fig. 2 Al₂O₃/Al-10Si composite microstructure


在分析高压下凝固的 Al₂O₃/Al-10Si 复合材料 α 相粒径时,发现随凝固压力增加,α 相晶粒尺寸无明显变化。比较不同方法制备的 Al₂O₃/Al-10Si 复合材料α相粒径,相对于热压烧结,明显发现在3、4、5 GPa 压力下凝固的 Al₂O₃/Al-10Si 复合材料α相晶体粒径较小[图 2(b)~图 2(d)]。高压可以降低晶体形核能,从而促进晶体形核,增加晶体数量;同时,压力升高抑制原子的长程扩散,从而降低晶体的生长速度。在高压的综合作用下,Al₂O₃/Al-10Si 复合材料α相晶粒细化。


图 3 为不同压力下凝固的 Al₂O₃/Al-10Si 复合材料 β 相形貌,由图 3(a)看出,凝固压力为 3 GPa 时,

Al₂O₃/Al-10Si复合材料α相边界处弥散分布着细小颗粒状的相,粒径约为0.1 μm,长径比基本为1:1,经XRD与EDS分析确定为β-Si。由图3(b)、图3(c)看出,随着凝固压力增加,β相颗粒尺寸不变,但整体所占体积比减少,说明高压对于β相晶粒的析出起到了抑制作用。

不同方法制备的 $Al_2O_3/Al-10Si$ 复合材料的能谱分析结果如表 1 所示。热压烧结 $Al_2O_3/Al-10Si$ 复合材料 α 相中 Si 的固溶度为 1. 22%,凝固压力为 3 GPa 时, $Al_2O_3/Al-10Si$ 复合材料 α 相中 Si 的固溶度为 5. 22%,当凝固压力增加到 4 GPa 时 α 相中 Si 的固溶度达到了 5. 76%,5 GPa 时为 6. 51%。结果表明,高

宇航材料工艺 http://www.yhclgy.com 2020年 第4期

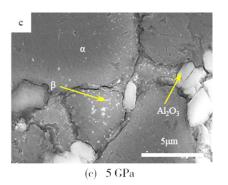


图3 高压凝固Al₂O₃/Al-10Si复合材料β相形貌

Fig. 3 β phase morphology of high pressure solidified Al₂O₃/Al-10Si composites

由于Al与Si的晶体结构不共格,导致热压烧结的 Al₂O₃/Al-10Si复合材料 α 相中 Si 的固溶度极低。常规凝固条件下,随着凝固反应的进行, α 相生长导致 Si元素偏析,固-液界面前沿的 Si 固溶度升高逐渐达到共晶点,最终凝固组织出现(α + β)共晶相。凝固压力上升达到 GPa 级后,元素扩散受到抑制,Si元素扩散速率减小,而凝固反应进行时固-液界面的推进速度变化不大,逐渐导致更多的 Si元素滞留在 α 相内,Al₂O₃/Al-10Si复合材料 α 相中 Si 的固溶度随压力的增加而增加,逐渐接近熔体中的 Si 含量, α 相生长时析出的 Si 元素总量减小,最终导致 β 相体积分数随凝固压力升高而减小。

表 1 Al₂O₃/Al-10Si 复合材料的 EDS 能谱分析结果 Tab. 1 EDS analysis results of Al₂O₃/Al-10Si composites

position	element/ $%(w)$	
	Al	Si
A	98.78	1.22
В	94.77	5.23
С	94.17	5.83
D	93.67	6.33
E	51.45	48.55
F	53.36	46.64
G	54.96	45.04

2.2 Al₂O₂/Al-10Si 复合材料力学性能

图 4 为不同方法制备的 Al₂O₃/Al-10Si 复合材料 α 相显微硬度。可以看出,热压烧结 Al₂O₃/Al-10Si 复合材料 α 相显微硬度为 55.3 HV,随着凝固压力升高,达到 5 GPa时,Al₂O₃/Al-10Si 复合材料 α 相显微硬度达到 128.1 HV,与热压烧结相比,α相显微硬度显著增加,提高了 133%。随着压力的升高,α相中 Si 含量增加,更多的 Si 原子代替了晶胞中的 Al 原子,α相晶格畸变增大,阻碍位错运动,导致 Al₂O₃/Al-10Si 复

合材料α相显微硬度增加。

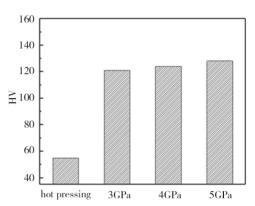


图4 Al₂O₃/Al-10Si复合材料α相显微硬度

Fig. 4 Micro-hardness of α phase of $Al_2O_3/Al-10Si$ composite

图 5 为不同方法制备的 Al₂O₃/Al-10Si 复合材料压缩应力-应变曲线。可以看出, Al₂O₃/Al-10Si 复合材料的拉伸强度和压缩率均随着压力的增加而增加。热压烧结制备的 Al₂O₃/Al-10Si 复合材料拉伸强度仅为 126 MPa。凝固压力为3 GPa时, 材料的拉伸强度为458 MPa,且随着凝固压力增加, Al₂O₃/Al-10Si 复合材料拉伸强度继续增加,4 GPa 为 514 MPa,凝固压力增加为 5 GPa, 拉伸强度达到了 702 MPa。

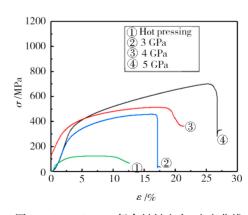


图 5 Al₂O₃/Al-10Si 复合材料应力-应变曲线

Fig. 5 Stress-strain curves of Al₂O₃/Al-10Si composite

不同方法制备的 $Al_2O_3/Al-10Si$ 复合材料的密度 如表 2 所示。根据计算, $Al_2O_3/Al-10Si$ 复合材料的理 论密度为 2. 78 g/cm^3 ,热压烧结制备的材料致密度为 92. 4%,压力增加到 GPa 级后,材料密度已经基本接近理论密度,致密度增加,有利于 $Al_2O_3/Al-10Si$ 复合材料力学性能提升。

表 2 Al₂O₃/Al-10Si 复合材料密度 Tab. 2 Density of Al₂O₃/Al-10Si composite

preparation method	$ ho/\mathrm{g}\cdot\mathrm{cm}^{-3}$	D/%
hot pressing	2.57	92.4
3 GPa	2.70	97.1
4 GPa	2.74	98.5
5 GPa	2.76	99.2

随着压力增加,Al₂O₃/Al-10Si复合材料拉伸强度和压缩率均大幅度增加。一方面,高压导致Al₂O₃/Al-10Si复合材料α相中Si的固溶度增加,形成固溶强化,增加了材料的拉伸强度;另一方面,就热压烧结而言,高压凝固Al₂O₃/Al-10Si复合材料施加的凝固压力大量增加,导致材料致密度增加,逐渐接近1,从而提高材料的力学性能。

3 结论

通过在凝固过程中施加不同压力制备出 Al₂O₃/Al-10Si 复合材料,研究了压力对于复合材料形貌的演变及力学性能的影响,得出下列结论。

- (1)高压抑制 Si 元素的扩散析出,提高晶体生长的界面稳定性,导致 $Al_2O_3/Al-10Si$ 复合材料 α 相等轴化,逐渐呈现出胞状生长的趋势。
- (2)随着凝固压力的增加,高压凝固 Al₂O₃/Al-10Si 复合材料 β 相体积分数减小。
- (3)与烧结相比,高压凝固 Al₂O₃/Al-10Si 复合材料α相粒径明显减小,且 Si 的固溶度随着凝固压力增加而增加,显微硬度随之增加,凝固压力达到 5 GPa 时,α相中 Si 的固溶度为 6.33 %,显微硬度达到 128.1 HV,比热压烧结 Al₂O₃/Al-10Si 复合材料α相显微硬度提高了133%。
- (4)随着压力的增加, Al₂O₃/Al-10Si复合材料拉伸强度大幅度增加,压力为5 GPa时制备的Al₂O₃/Al-10Si复合材料拉伸强度达到了702 MPa。

参考文献

- [1] ASHWAT P, JOEL J, PRASHANTHA H G, et al. Processing and characterization of extruded 2024 series of aluminum alloy [J]. Materials Today: Proceedings, 2018, 5(5): 12479–12483.
- [2] LU J, SONG Y L, HUA L, et al. Thermal deformation behavior and processing maps of 7075 aluminum alloy sheet 70 —

based on isothermal uniaxial tensile tests [J]. Journal of Alloys and Compounds, 2018, 787(1):856-869.

- [3] 徐通,张宇飞,李咏凯. 高性能亚共晶铝硅合金的研究[J]. 材料研究与应用,2017,11(4);236-239.
- XU T, ZHANG Y F, LI Y K. The study of high performance hypo-eutectic aluminum silicon alloy [J]. Materials Research and Application, 2017, 11(4):236-239.
- [4] XU H, ZHANG G Z, CUI W, et al. Effect of $Al_2O_{(3sf)}$ addition on the friction and wear properties of $[SiC_p + Al_2O_{(3sf)}]/Al2024$ composites fabricated by pressure infiltration [J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(3):375-382.
- [5] 白彩盛,赵立杰. 金属材料在汽车轻量化中的应用探讨[J]. 世界有色金属,2019,13:291-293.
- BAI C S, ZHAO L J. Application of metal material in automotive lightweight [J]. World Nonferrous Metals, 2019, 13: 291-293.
- [6] JOEL J. ANTHONY X M. Aluminum alloy composites and its machinability studies; a review [J]. Materials Today: Proceedings, 2018, 5(5):13556-13562.
- [7] BI J, Zhao C C, DU B, et al. Formability and strengthening mechanism of AA6061 tubular components under solid granule medium internal high pressure forming [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 226–234.
- [8] 张冰,赵宇宏,王鸿,等. Al-Si 合金枝晶形貌的三维相场模拟[J]. 稀有金属材料与工程,2019,48(9):2835-2840.
- ZHANG B, ZHAO H Y, WANG H, et al. Three-dimensional phase field simulation of dendritic morphology of Al-Si alloy [J]. Rare Metal Materials and Engineering, 2019, 48(9): 2835–2840.
- [9] LI R X, LI R D, BAI Y H, et al. Effect of specific pressure on microstructure and mechanical properties of squeeze casting ZA27 alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1):59-63.
- [10] 付莉超,赵鑫,郭洋,等.5 GPa超高压凝固 Al-1Ni-3Y 合金的凝固组织及相分析[J]. 铸造技术,2015,36(3):712-715.
- FU L C, ZHAO X, GUO Y, et al. Microstructure and phase analysis of Al-1Ni-3Y alloy solidified at 5 GPa [J]. Foundry Technology, 2015, 36(3):712-715.
- [11] 赵鑫,徐瑞. Al-Ni-Y三元共晶合金高压凝固组织 [J]. 中国稀土学报,2012,30(02):181-185.
- ZHAO X, XU R. Solidification microstructure of ternary eutectic Al-Ni-Y alloy under high pressure [J]. Journal of the Chinese Society of Rare Earths, 2012, 30(2):181-185.
- [12] JIAO X Y, WANG J, LIU C F, et al. Characterization of high-pressure die-cast hypereutectic Al-Si alloys based on microstructural distribution and fracture morphology [J]. Journal of Materials Science and Technology, 2019, 35(6):1099-1107.
 - [13] DONG Y, LIN X P, XU R, et al. Microstructure and 宇航材料工艺 http://www.yhclgy.com 2020年 第4期

- compression deformation behavior in the quasicrystalreinforced Mg-8Zn-1Y alloy solidified under super-high pressure [J]. Journal of Rare Earths, 2014, 32(11):1048-1055.
- [14] 李全,马琰铭. 高压下轻元素单质的结构相变[J]. 化学进展,2011,23(5):829-841.
- LI Q, MA Y M. Phase transitions in light elements under pressure [J]. Progress in Chemistry, 2011, 23(5):829-841.
- [15] 于溪凤,张国志,肖汉杰,等. 高压凝固亚共晶 Al-Si 合金的组织变异及生长机制[J]. 材料研究学报,2000,14 (S1):141-144.
- YU X F, ZHANG G Z, XIAO H J, et al. Microstructure changes and growth mechanism of hypoeutectic Al–Si alloy solidified at high pressure [J]. Chinese Journal of Materials Research, 2000, 14(S1):141–144.
- [16] 张国志,于溪凤,张雅静,等. Al-Si 合金超高压凝固过饱和固溶体的时效组织与性能[J]. 材料与冶金学报,2006,5(1):61-63.
- ZHANG G Z, YU X F, ZHANG Y J, et al. Precipitated structure and properties of Al-Si alloy extended solution solidified at high pressure [J]. Journal of Materials and Metallurgy, 2006, 5(1):61-63.
- [17] 朱冬冬,董多,贺庆,等. 高压凝固 Ti-48Al 合金片层组织失稳机理[J]. 稀有金属材料与工程, 2017,46(S1): 217-220.
- ZHY D D, DONG D, HE Q, et al. Instability mechanism of lamellar structures of Ti-48Al alloy solidified under high pressure [J]. Rare Metal Materials and Engineering, 2017, 46 (S1): 217-220.
- [18] LI L X, LI M, ZHANG L W. Effects of high pressure on the solidification microstructure of Al-Si alloy [J]. Advanced Materials Research, 2011, 320:14-19.
- [19] MA P, WEI Z J, JIA Y D. Effect of high pressure solidification on tensile properties and strengthening mechanisms of Al–20Si [J]. Journal of Alloys and Compounds, 2016, 688: 88–93.

- [20] LIU M W, ZHENG R X, XIAO W L, et al. Concurrent enhancement of strength and ductility for Al-Si binary alloy by refining Si phase to nanoscale[J]. Materials Science, 2019, 751: 303-310.
- [21] MA P, ZOU C M, WANG H W, et al. Effects of high pressure and SiC content on microstructure and precipitation kinetics of Al-20Si alloy[J]. Journal of Alloys and Compounds, 2014,586:639-644.
- [22] KSIAZEK M, SOBCZAK N, MIKULOWSKI B, et al. Wetting and bonding strength in Al/Al₂O₃ system [J]. Materials Science and Engineering, 2002, 324(1):162-167.
- [23] SARINA B, TANG K, KVITHILD A, et al. Wetting of pure aluminium on graphite, SiC and Al_2O_3 in aluminium filtration [J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (8):1930–1938.
- [24] 徐畅,黄铎,林小娉,等. Cu对高压凝固 Mg-9Al-1Zn 合金显微组织及力学性能的影响[J]. 铸造,2019,68(8):860-866
- XU C, HUANG D, LIN X P, et al. Effect of Cu addition on microstructure and mechanical properties of high pressure solidified Mg-9Al[J]. Foundry, 2019, 68(8):860-866.
- [25] 吴建鹏, 张波, 王若兰. XRD 在固溶体固溶度测定中的应用[J]. 陕西科技大学学报, 2005, 23(1): 35-37.
- WU J P, ZHANG B, WANG R L. The application of XRD analysis on the measuring of the solubility of solid solution [J]. Journal of Shaanxi University of Science and Technology, 2005, 23(1):35-37.
- [26] 王振玲,张涛,李莉,等.常压及高压凝固 Al-Mg及 Al-Mg-Zn 合金中 Al 相的固溶体结构[J].中国有色金属学报,2012,22(4):1006-1012.
- WANG Z L, ZHANG T, LI L, et al. Solid solution structure of Al phase in Al-Mg and Al-Mg-Zn alloys solidifying under normal pressure [J]. The Chinese Journal of Nonferrous Metals, 2012,22(4):1006-1012.