# 无蒙皮复合材料网格结构设计与分析

### 提亚峰 刘利明 陈献平 季宝锋 黄 诚 (北京宇航系统工程研究所,北京 100076)

**文 摘** 无蒙皮复合材料网格结构是复合材料结构中承载效率最高的结构形式,但其设计成型较其他复合材料网格结构更为困难。本文以工程应用为目的,考虑工艺成型问题,定性与定量分析相结合。按网格形式选择、典型结构工程计算、有限元优化计算、确定工程方案及试验验证五个层次分级优化。最终达到结构形式、设计计算、工艺成型等各方面综合最优的效果。生产出的无蒙皮复合材料网格结构满足工程应用要求,同时找到了工艺成型薄弱环节,为制造最优结构创造了条件。

关键词 无蒙皮复合材料网格结构,设计与分析,结构优化,试验验证

中图分类号:TB3 DOI:10.12044/j.issn.1007-2330.2019.01.003

## Design and Analysis of Composite Materials Grid Structure Without Skin

TI Yafeng LIU Liming CHEN Xianping JI Baofeng HUANG Cheng (Beijing Institute of Aerospace Systems Engineering, Beijing 100076)

**Abstract** Composite materials' grid structure without skin is the most efficient structure in composite materials grid structure. But compared with other composite materials grid structure, it is more difficult to design and shape. For the purpose of engineering application, this paper considers the problem of process forming, combining qualitative analysis with quantitative analysis. Optimized by five levels of grid form selection, typical structural engineering calculation, finite element optimization calculation, determination of engineering scheme and experimental verification. Finally comprehensive optimal effects is reached in various aspects such as structural form, design calculation, and process molding. It is verified that composite materials grid structure without skin can meet the requrements of engineering application. At the same time, the weak link of process molding is found, which created the conditions for the optimal structure.

Key words Composite grid structure without skin, Design and analysis, Structural optimization, Test verification

#### 0 引言

复合材料网格结构以其优异的力学承载性能及 诸多工艺生产方面的优点在航空航天领域得到了越 来越广泛的应用。无蒙皮复合材料网格结构在继承 复合材料网格结构自稳定性高、抗屈曲能力强、可优 化性强、初始缺陷敏感性低、应力分布均匀、可有效 分配载荷、便于检测修补、可自动化制造、制造成本 低、生产效率高等诸多优点<sup>[1]</sup>的同时,还有自身独特 的优点:计算及试验均表明复合材料网格结构中网 格筋条承载效率远高于蒙皮<sup>[2-3]</sup>;无蒙皮复合材料网 格结构通过成型网格筋条的方法,实现结构轻质化。 网格结构网格筋条与蒙皮间的粘接界面是薄弱界 面,无蒙皮复合材料网格结构自然克服了这一缺点, 提高结构承载能力。由于无蒙皮复合材料网格结构 无法通过蒙皮传递剪切力,有些网格形式不适合设 计成无蒙皮复合材料网格结构,要有针对性地进行 网格形式选择。同时由于没有蒙皮,网格筋条相交 的节点处成型及网格筋条与端框的连接均更为困 难。目前国内尚无自主设计生产的无蒙皮复合材料 网格结构应用于工程实践。

本文以工程应用为目的,通过适当的设计成型 方法克服无蒙皮复合材料网格结构设计成型等困

收稿日期:2018-08-06

第一作者简介:提亚峰,1970年出生,高级工程师,主要从事复合材料结构设计制造方面的研究工作。E-mail:tiyafeng@sohu.com

难,以代替金属杆系结构,实现结构低成本、轻质化。

1 无蒙皮复合材料网格结构设计思路

无蒙皮复合材料网格结构可优化性强,其优化 变量包括网格螺旋筋的螺旋角角度和螺旋筋数目、 纵筋和环筋的数目、筋的截面尺寸如筋条高度和宽 度等。在结构外形尺寸及载荷一定的条件下,对设 计变量进行优化,可得到质量最轻的结构。但在结 构可优化性强的同时,也加大了结构优化难度。为 使结构均匀承载,要求螺旋筋数等分圆周且对称、筋 条高度是单层丝束厚度的倍数。即这两个变量是离 散变量。筋条宽度由丝束宽度决定,可任意调整,即 此变量是连续变量。能够在火箭结构中得到工程应 用的无蒙皮复合材料网格结构,其承载要求高且承 载形式复杂。承载能力计算涉及非线性。因此无蒙 皮复合材料网格结构优化是多变量(包括连续和离 散混合变量)、多约束、多工况和非线性优化。由于 复合材料结构设计-材料-工艺三者密不可分,其工 艺特点是零件制造和材料成型同时完成,工艺成型 质量决定结构承载能力,同时筋宽、筋高比也受到工 艺限制。结构设计及优化必须考虑工艺可行性和简 便性。以工程应用为目的,考虑工艺成型问题,定性 与定量分析相结合,分级优化,最终达到设计、计算、 优化、工艺等各方面综合最优的效果;而不是仅追求 理论计算承载最高、结构质量最轻。根据这一设计 思路,应先进行无蒙皮复合材料网格结构网格形式 选择;再对此网格形式中的几个典型结构进行计算 及选择;以工程上可行的参数组合为基础进行有限 元优化计算:确定工程方案并进行设计生产试验验 证,在确保满足工程应用的前提下为进一步优化创 造条件。

#### 2 无蒙皮复合材料网格结构网格形式选择

无蒙皮复合材料网格结构主要有菱形(含斜置 正交)、长方形(正置正交)、六边形、三角形、三角形 与六边形相间构型(混合三角形)、米字形等网格形 式可供选择,如图1所示。

菱形、长方形复合材料网格结构为双向筋条结构。长方形复合材料网格结构没有斜向螺旋筋条, 抗扭能力差;菱形复合材料网格结构没有环向筋条, 环向刚度差。这两种网格形式均不适合设计成无蒙 皮结构。六边形、三角形、三角形与六边形相间构型 复合材料网格结构为三向筋条结构。六边形构型各 向筋条均不连续,承载能力差且工艺上不易成型。 三角形网格结构是一种很好的结构形式,其环筋、纵 筋和斜筋(螺旋筋),三向筋条构成柱面三角形框架, 是一种较为稳定的结构。合理设计的三角形网格结 构具有自稳定性。此特点对于提高无蒙皮结构承载 一 16 一 能力尤其重要。同时三角网格结构环筋、螺旋筋缠 绕成型工艺性好,生产效率高<sup>[3]</sup>。但三角形网格结构 在任何一节点上都有三条筋相互交叉,存在架空现 象<sup>[1]</sup>。此工艺困难对无蒙皮复合材料网格结构尤为 难以克服。因此三角形网格不适合设计成无蒙皮结 构。三角形与六边形相间构型复合材料网格结构拥 有三角形网格结构的优点,同时由于其任意节点都 是两向筋条向交叉,克服了三角网格的工艺成型困 难,因此适合设计成无蒙皮结构。



图1 无蒙皮复合材料网格结构网格

Fig. 1 Grid forms of composite materials

米字形复合材料网格结构为四向筋条结构,是 在三角网格的基础上增加了轴向承载效率最高的纵 向筋条,能承受轴、弯、剪、扭等各种载荷,是最为稳 定的无蒙皮网格结构。但四条筋相互交叉,架空现 象更为严重,因此也不适合设计成无蒙皮结构。

综上所述,三角形与六边形相间构型是无蒙皮 宇航材料工艺 http://www.yhclgy.com 2019年 第1期 复合材料网格结构优选构型。

- 3 无蒙皮复合材料网格结构设计、计算及优化
- 3.1 轴压承载能力计算公式

无蒙皮复合材料网格结构的设计计算,可参照 复合材料网格结构的设计计算方法,不计及蒙皮承

$$C_{11} = A_{11}\alpha^{2} + A_{66}\beta^{2}$$

$$C_{22} = A_{22}\beta^{2} + A_{66}\alpha^{2}$$

$$C_{12} = (A_{12} + A_{66})\alpha\beta$$

$$C_{16} = (B_{12} + 2B_{66})\alpha\beta^{2} + B_{11}\alpha^{3} - \frac{A_{12}}{R}\alpha$$

$$C_{26} = \frac{A_{22}}{R}\beta - (B_{12} + 2B_{66})\alpha^{2}\beta - B_{22}\beta^{3}$$

$$C_{66} = D_{11}\alpha^{4} + 2(D_{12} + 2D_{66})\alpha^{2}\beta^{2} + D_{22}\beta^{4} + \frac{A_{22}}{R^{2}} - \frac{2B_{12}}{R}\alpha^{2} - \frac{2B_{22}}{R}\beta^{2}$$

$$\alpha = \frac{m\pi}{l_{1}}; \beta = \frac{n}{R}$$
(3)  $\vec{\Sigma} \vec{\Xi}_{0}$ 

上的应力—应变关系为:

式中,1,为网格加筋壳长度,R为网格加筋壳半径,m 为加筋壳失稳后的纵向半波数,n为加筋壳失稳后的 环向波数;A<sub>i</sub>为拉伸刚度,B<sub>i</sub>为拉-弯耦合刚度,D<sub>i</sub>为 弯曲刚度。

$$A_{ij} = \sum_{k=1}^{N} (\overline{Q}_{ij})_{k} t_{k} + \sum_{m=1}^{L} (\overline{Q}_{ij})_{m} h_{m}$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{N} (\overline{Q}_{ij})_{k} (z_{k}^{2} - z_{k-1}^{2}) + \sum_{m=1}^{L} (\overline{Q}_{ij})_{m} (t + \frac{h_{m}}{2}) h_{m}$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{N} (\overline{Q}_{ij})_{k} (z_{k}^{3} - z_{k-1}^{3}) + \frac{1}{3} \sum_{m=1}^{L} (\overline{Q}_{ij})_{m} [(t + h_{m})^{3} - t^{3}]$$
(4)

式中, $(\overline{Q_{ij}})_{ij}$ 蒙皮各层在壳体结构主方向上的刚度,  $(\overline{Q_{ij}})$  为筋条各当量层在壳体结构主方向上的刚度,  $t_{\iota}$ 为蒙皮各层的厚度, $h_{u}$ 为筋条各当量层的厚度, $z_{\iota}$ 为蒙皮各层在壳体内法线方向的坐标, $t = \sum_{k=1}^{n} t_k$ 为蒙 皮总厚度,N为蒙皮总层数,L为筋条的总方向数,  $\overline{Q}_{11}, \dots, \overline{Q}_{nn}$ 在结构主方向坐标系里的刚度元素。

规定简壳轴线 x 正向到层坯主方向1的夹角 $\theta$ 为 层坯的主方向,则层坯在壳体结构主方向上的应 力-应变关系为:

$$\begin{bmatrix} \overline{Q}_{11} \\ \overline{Q}_{22} \\ \overline{Q}_{12} \\ \overline{Q}_{66} \\ \overline{Q}_{66} \\ \overline{Q}_{26} \end{bmatrix} \begin{bmatrix} m^4 & n^4 & 2m^2n^2 & 4m^2n^2 \\ n^4 & m^4 & 2m^2n^2 & 4m^2n^2 \\ m^2n^2m^2n^2 & m^4 + n^4 & -4m^2n^2 \\ m^2n^2m^2n^2 & -2m^2n^2 & (m^2 - n^2)^2 \\ m^3n & -mn^3 & mn^3 - m^3n & 2 (mn^3 - m^3n) \\ mn^3 & -m^3n & m^3n - mn^3 & 2 (m^3 n - mn^3) \end{bmatrix} \begin{bmatrix} Q_{11} \\ Q_{22} \\ Q_{12} \\ Q_{66} \end{bmatrix}$$
(5)

式中,Q11,...,Q66为在层坯主方向坐标系里的刚度 宇航材料工艺 http://www.yhclgy.com 2019年 第1期

载能力即可,相关公式如下[4]:

$$T_{ij} = 2\pi R \frac{1}{\alpha^2} \left[ C_{66} - \frac{2C_{12}C_{16}C_{26} + C_{11}C_{26}^2 + C_{22}C_{16}^2}{C_{11}C_{22} - C_{12}^2} \right]$$
(1)

式中,T"为临界轴压承载能力。

$$Q_{11} = E_1 / (1 - \nu_{12}^2 \frac{E_2}{E_1})$$

$$Q_{22} = E_2 / (1 - \nu_{12}^2 \frac{E_2}{E_1})$$

$$Q_{12} = \nu_{12} Q_{22}$$

$$Q_{66} = G_{12}$$
(6)

(2)

对于筋条部分,设某一方向的筋条宽度为6、高 度为h、间距为s、顺纤维方向的弹性模量为E、则这同 一方向的筋条构成一当量正交异性层。其当量正交 异性层的方向角为筋条的方向角 $\theta$ ,此正交各向异性 层的弹性常数变为

$$\begin{array}{c}
E_{1} = Eb/s \\
E_{2} = 0 \\
\mu_{12} = 0 \\
G_{12} = 0
\end{array}$$
(7)

#### 3.2 典型结构的计算

圆柱形、三角形与六边形相间的无蒙皮复合材 料网格结构在确定直径D和长度L后,共有6个参数 (图2)需要确定:筋条高度h;螺旋筋的螺旋角 $\phi(\theta)$ ; 螺旋筋宽度 $\delta_{i}(b螺旋)$ ;环筋宽度 $\delta_{i}(b环)$ ;螺旋筋间 距 $a_{i}$ (展开尺寸s螺旋);环筋的间距 $a_{i}$ (s环)。 $a_{i}$ 与同 高度两相临螺旋筋节点间周向弧长a之间的关系为:  $a_{h} = a \cos \phi, a$ 可表示为度数,如6°即表示占圆周的  $1/60_{\circ} a_{c} = a_{k} \csc \phi/2$ ,即当螺旋角  $\phi$  及螺旋筋的间距 a<sub>4</sub>确定后,环筋的间距a<sub>2</sub>随之确定。即共有5个参数 供优化。先确定a,再通过a与 $a_h$ 及 $a_c$ 与 $a_h$ 之间的关 系式确定a,及a,如此便于螺旋筋等分圆周。3.1节 的公式中含有以上复合材料网格结构的重要结构参

— 17 —

数,可对结构参数进行调整计算。选择图3中7种典型网格结构进行参数调整计算<sup>[4]</sup>。











— 18 —

为缠绕成型方便,将纵筋环筋和螺旋筋的筋宽 设置为等宽。壳体半径1400 mm,壳体高度550 mm,筋条高度为9 mm,筋条宽度为4 mm。*E*<sub>1</sub>=120 GPa。计算结果见表1。

经过参数调整计算,可迅速找到工程上可行的 参数组合,作为优化计算的输入,从而减小优化计算 的工作量。

表 1 典型网格结构参数计算结果 Tab. 1 Calculation results of typical grid structure

| 典型<br>结构 | 螺旋筋<br>间距/mm | 环纵筋<br>间距/mm | 当量<br>厚度 | 纵向半<br>波数 | 环向<br>波数 | 轴压临界<br>载荷/kN |
|----------|--------------|--------------|----------|-----------|----------|---------------|
| а        | 141.5        | 273.4        | 0.64     | 1         | 10       | 520.5         |
| b        | 106.2        | 205          | 0.85     | 1         | 10       | 693.9         |
| с        | 105.8        | 105.8        | 1.02     | 2         | 10       | 1414.4        |
| d        | 109.9        | 109.9        | 0.98     | 2         | 10       | 1361.7        |
| е        | 94.8         | 183.2        | 0.96     | 2         | 11       | 784.3         |
| f        | 91.8         | 134.2        | 1.05     | 1         | 11       | 1115.5        |
| g        | 137.7        | 201.3        | 0.7      | 1         | 11       | 743.7         |

#### 3.3 网格参数优化方法

经参数调整计算选取的网格参数不一定是最优 的。模具上一旦加工出网格筋槽,再改变网格尺寸, 会导致整个阳模的返修或报废。根据试验结果不断 修正结构从而达到结构优化的办法,对于无蒙皮复 合材料网格结构成本过高、周期过长,可应用有限元 方法进行结构优化。其设计载荷、壳体的长度和半 径以及筋条的材料常数均为已知量,可取筋条间距、 筋条高度、筋条宽度为设计变量。其中筋条宽度是 连续变量,筋条间距可由筋条数量决定,筋条高度可 定义为单层厚度乘以某一整数。通过优化计算,最 终得到结构质量轻、承载能力高的优化结构。可以 通过提取单胞,利用单胞的复制、移动和旋转等操作 来建立整个结构。

#### 3.3.1 单胞建立

如图4所示,图中坐标值以单胞周向长度(L)、单胞轴向长度(H)和蒙皮端部长度(H<sub>e</sub>)来表示,并有如下关系式:

#### $L = 2\pi R_1 / B_n, H = L \tan(B_a)$

式中, R<sub>1</sub>表示圆柱中面半径; B<sub>n</sub>表示斜向筋条数; B<sub>a</sub>表 示筋条之间的夹角, 此夹角取不同值时即可实现不 同网格形式单胞的建立。H<sub>e</sub>的意义是:圆筒总长度 是一定的, 沿轴向划分的单胞结构将不可能恰好整 分圆筒轴向长度, 于是圆筒蒙皮两端将会多出一段, 将其定义为蒙皮端部长度。

宇航材料工艺 http://www.yhclgy.com 2019年 第1期

按照图 4 中所示坐标创建节点 node1、node2、 node3 和 node 4,在需要加筋条的边上创建梁单元,用 梁单元模拟筋条,在建模的同时自动完成网格划分 工作。





Fig. 4 Schematic diagram of single-cell

3.3.2 结构成型

创建单胞后,通过对单胞进行一系列的变换得 到整个结构的有限元模型。

首先将单胞进行轴向平移,然后运用与创建单 胞类似的方法将两端的端部(即不够一个整单胞的 部分)补全,再对网格进行细化,得到大单胞,如图5 左图所示。此时的大单胞是一个平面图形。

利用场函数将平面图形映射到空间的圆柱面 上,得到如图5右图所示的结果。



图 5 大单胞及映射后的示意图 Fig. 5 Large signal-cell and mapping of diagram

将5右图所示的结构绕x轴复制一周得到所要 建立的圆柱。若端框的高度不为零,则需要再添加 端框,这个功能通过扫描来实现。最后去除模型中 的重复节点和重复单元。到此复合材料网格结构有 限元模型建立完毕,所建立的圆柱模型如图6所示。



图 6 复合材料网格结构圆柱壳有限元模型 Fig.6 Finite element model of composit material grid structure



由此可实现快速建模,结合遗传算法可对结构 进行优化计算,从而得到最优结构参数组合。对于 无蒙皮复合材料网格结构,仅对筋条进行建模及划 分单元即可,其过程比有蒙皮复合材料网格结构简 单。以表1中所列结果为初始输入,以上述方法快速 建模对结构进行优化。优化结果为:筋条高度8.9 mm,筋条宽度4.2 mm,斜筋螺旋角22°,斜筋间距 5.8°。

#### 3.4 结构方案的确定及精确模型有限元计算

优化结果经圆整,与3.2所述方案7相同。根据 工艺建议,降低筋条高度,加大筋条宽度。筋条高度 接近优化尺寸,确定为8.5 mm。筋条宽度加大至 12.75 mm。根据工程需要,结构上有一处240×250 的开口,会降低结构的承载能力。对开口进行补强。 补强后的承载效率可达原承载的90%以上。结构三 维模型见图7。



图 7 印码二组候型 Fig. 7 3D model of structure

建立精确的有限元计算模型,进行有限元计算。 根据工程应用的实际情况,边界条件设置为半固支。 结构应变图见图8。



Fig. 8 Strain diagram of the structure

根据复合材料网格结构<sup>[2,4]</sup>试验情况,结构会在 应变达到7000με左右时失稳。考虑到无蒙皮复合 材料网格结构各向筋条没有蒙皮支撑,其失稳应变 定为6000με。经计算,不考虑开口边角处的应力集 中,结构承载能力为1510kN,远大于轴压设计载荷 333kN。如图9所示。

— 19 —



#### 4 无蒙皮复合材料网格结构的生产及试验

无蒙皮复合材料网格结构的成型装置可参照复 合材料网格结构的成型装置<sup>[5]</sup>。由于结构无蒙皮,筋 条缠绕时高度不易控制,太高则筋条高出阳模的部 分成型质量及尺寸不好控制;太低则阴模无法压实 筋条。可加深阳模筋槽,并制备与筋条同宽的硅橡 胶条,在筋条完成缠绕后,将硅橡胶条置于阳模筋槽 内,用于压实筋条。碳纤维选择性能稳定的国产碳 纤维,其生产批量大、性能偏差小;同时大幅度降低 生产成本。如图10~12 所示。



图 10 被替代的金属杆系结构 Fig. 10 The replaced metal rod structure





试验表明,无蒙皮复合材料网格结构在满足设 计要求的情况下质量为28 kg,较金属杆系结构减轻 41%。结构的轴压承载能力为806 kN,虽然超过设 计,但低于计算结果。试验过程中,测量得到的应变 与有限元计算所得应变趋势相同,但结构没有在应 变最大的开口处破坏(应变4000 µɛ),而是在网格节 点产生破坏(应变3600 µɛ),这说明节点成型质量还 有提高余地。根据工艺要求加大筋条宽度以减小筋 条节点处的应力是低效率的加强方式,是受节点成 型质量限制而采用的措施。只要提高节点质量,可 将筋条高度加高到计算最优值、将筋条宽度减小一 半而结构承载能力不会有明显下降。由此可进一步 减重,同时试验破坏载荷将与计算值更为接近。



图 12 破坏形式及位置 Fig. 12 The form and position of destruction

#### 5 结论

采用无蒙皮复合材料网格结构可取得很好的减 重效果。将设计生产出的无蒙皮复合材料网格结构 应用于工程实践,满足了工程研制需要,同时实现了 低成本、轻质化的目标,可广泛应用于级间段、卫星 支架等结构。今后可将最优结构参数组合与自动化 缠绕工艺、固化罐成型工艺等最优工艺方法结合起 来,设计并生产出最优结构。

#### 参考文献

[1] 提亚峰,张铎,董波.C/E复合材料网格缠绕结构一体 化设计[J]. 宇航材料工艺,2010,40(6):33-37.

[2]提亚峰,张铎,孙宏杰,等.在轴、外压联合作用下的 C/E复合材料网格缠绕结构的开口补强设计[J]. 宇航材料工 艺,2010,40(6):27-32.

[3] 提亚峰. 复合材料网格结构参数调整及优化计算 [J]. 宇航总体技术,2013,3(3):26-34.

[4] TI Yafeng, ZHANG Duo, WANG Lipeng, et al. Comparison structure forms between isogrid and orthogrid of c/e composite trellis wound structure based on calculation of loadcarrying [J]. AEROSPACE MATERIALS & TECHNOLOGY, 2010,40(5):22-26,32.

[5] 提亚峰, 董波, 郭永辉, 等. 复合材料网格缠绕结构三 维建模与模具设计[J]. 宇航材料工艺, 2010, 40(4): 23-26.