针对异物夹杂类缺陷的双道偏置补焊方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TG4

基金项目:


Repairing Inclusion Defect by Dual-Pass Friction Stir Welding Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    异物夹杂类缺陷是搅拌摩擦焊接过程中一类典型缺陷。一旦发生该类缺陷,只有对焊缝进行挖排来去除异物后,才能实施补焊。针对挖排造成焊缝材料缺失,现有的方法是通过熔焊或赛填固体颗粒来进行填充。上述方法不仅会在焊缝中引入有异于母材的材料,而且工艺过程繁琐。特别是熔焊的焊接热会对补焊区域周围的母材造成影响,从而造成补焊接头强度的削弱。针对现有补焊方法的不足,本文提出一种双道偏置补焊方法,实施过程简便,可实现等强度补焊。经试验证明,该方法可获得与原始焊缝具有相等强度的补焊焊缝。

    Abstract:

    Inclusion of foreign bodies is a typical kind of defect in friction stir welding. The included foreign bodies must be eliminated before performing the joint repairing. By using some fused material, or that one in solid-state, some additional material with the same volume as the removed one must be compensated into the eliminated area in the joint. This process is cumbersome, and would bring in some elements which is not existing in the base material. Furthermore, the thermal treatment induced by the fusion in the joint which need to repair would affect the microstructure in the joint. And, it would weaken the strength of the repaired joint. All above are the shortages in existing repairing methods. In this paper, we proposed a dual-pass friction stir welding method, which can repair the joint after removing inclusion of foreign bodies.Without additional material addition, this method can produce the repaired joint that has the same strength as the original one. And it is convenient in application. Especially, the repaired joint has improved elongation.It can be conclude that the proposed repairing method is practical, and has a great application prospect. It has been proved by experiments that the proposed method can make a repairing joint with the same strength as the original one.

    参考文献
    相似文献
    引证文献
引用本文

石璟,邹敏,黄小鲁,黄举近.针对异物夹杂类缺陷的双道偏置补焊方法[J].宇航材料工艺,2017,47(1):62-66.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-02-17
  • 出版日期:
第十一届航天复合材料成形与加工工艺技术中心交流会 征文通知

关闭