CFRP 网格面板蜂窝夹芯结构锁相红外外检测方法

冯君伟1 盛涛1 汪丽丽2 钱云翔1 郑金华1
(1 上海复合材料科技有限公司, 上海 201112)
(2 上海材料研究所, 上海 200437)

文摘 依据 CFRP 网格面板蜂窝夹芯结构、成型工艺、使用环境, 以有效检测其内部脱粘、分层、纤维断裂缺陷为目标,设计并制作了含有典型缺陷的试块,通过试验确定了锁相红外热成像检测的锁相周期、锁相频率等检测参数, 建立了锁相红外热成像检测方法。试验表明: 该方法能够有效的检测并分别出 CFRP 网格面板蜂窝夹芯结构中的脱粘缺陷、分层缺陷、纤维断裂。

关键词 CFRP 网格面板、蜂窝夹芯结构、锁相红外热成像, 脱粘, 分层, 纤维断裂
中图分类号: TN219 DOI: 10.12044/j. issn. 1007-2330. 2019. 06. 013

Lock−in Infrared Thermography Testing Method for Honeycomb Sandwich Structure of CFRP Grid Panel

FENG Junwei1 SHENG Tao1 WANG Lili2 QIAN Yunxiang1 ZHENG Jinhua1
(1 Shanghai Composite Materials Technology Co., Ltd, Shanghai 201112)
(2 Shanghai Research Institute of Materials, Shanghai 200437)

Abstract According to the honeycomb sandwich structure of CFRP grid panel and the forming technology and application environment, a test block containing typical defects is designed and made, aiming at effectively detecting the internal debonding, lamination and fiber fracture defects. The detection parameters such as phase−locked period and frequency of lock−in infrared thermography are determined by the test method, and the detection method of lock−in infrared thermography is established. The experimental results show that this method can detect and separate the debonding defects, delamination defects and fiber fracture in the honeycomb sandwich structure of CFRP grid panels.

Key words CFRP Grid Panel, Honeycomb Sandwich Structure, Lock−in infrared thermography, Debonding defect, Lamination defect, Fiber fracture

0 引言

复合材料被广泛运用, 其制件内部易存在影响其使用性能与可靠性的缺陷, 对这些缺陷进行无损检测具有非常重要的意义。

CFRP 网格面板蜂窝夹芯结构的表面的碳纤维网格面板为空心结构, 因为采用传统的超声检测, 无法避免检测用的耦合剂流人产品内部, 且超声探头无法稳定接触产品表面, 故常用的检测方法不适合。

本文采用锁相红外热成像技术对 CFRP 网格面板蜂窝夹芯结构产品检测, 制作了相应结构和缺陷类型的试块, 确定了检测系统的参数, 实现了缺陷的检测。

1 锁相红外热成像检测技术
1.1 成像检测方法

如图 1 所示, 使用 LED 阵列光源对 CFRP 网格面板进行周期性调制热激励。

![图 1 锁相红外热成像技术示意图](image)

Fig.1 Phase−locked infrared thermal imaging technology

利用高能量脉冲光加热产品表面, 热波传播至产品内部, 在无缺陷区域, 热波均匀传播, 最终表面温度
均匀，在有缺陷区域，热传导被缺陷阻断，最终表面呈现温差[1]。对红外热像仪观察的序列热图像加以处理得到振幅和相位信息图像，其中，振幅表征了反射和入射热波的矢量和，相位表征了反射和入射热波之间的相位差。镜相红外热成像检测技术（IT），受环境影响小，空间分辨率高，成像效果清晰，灵敏度较高[2]。

1.2 成像检测系统

镜相红外热成像检测系统如图2所示，主要由红外热像仪、机械传动系统、锁相控制系统、LED阵列光源、控制与图像处理系统组成。系统软件功能包括图像采集、图像处理、运动控制和参数设置[3]。数据采用1 024 点/2 048 点 FFT 进行处理，得到振幅图像和相位图像。

图2 镜相红外成像系统图
Fig.2 Phase-locked infrared thermal imaging system

2 缺陷识别及试样制备

2.1 结构中的缺陷类型

本文所检测的产品 CFRP 网格面板蜂窝夹芯结构如图3所示，主要包含3 个部分：聚酰亚胺薄膜、碳纤维网格面板，铝蜂窝芯。具体制备方法为：首先在网格面板胶接面上使用毛刷涂刷胶液，然后铝蜂窝芯正面和背面粘贴网格面板，接着上下表面铺不透气脱模布和均压板，抽真空并进固化炉烘几小时；紧接着脱模，再在基板胶接面涂刷胶液，粘贴聚酰亚胺薄膜并铺透气脱模布和均压板，最后抽真空进固化炉。此种结构的材料不仅具有碳纤维蒙皮蜂窝夹芯结构的特性，还具有其他更多的优势，如隔热性、绝缘性以及整体质量更轻。此种结构的产品是卫星太阳能电池的部件之一。

图3 结构及缺陷位置示意图
Fig.3 Structure and defect location diagram

整体结构存在3 类缺陷，碳纤维网格面板断裂缺陷、碳纤维网格面板内部的分层缺陷、脱粘缺陷。根据脱粘缺陷出现的位置不同可分为：(1) 聚酰亚胺薄膜与碳纤维网格面板之间脱粘，(2) 碳纤维网格面板与铝蜂窝之间脱粘[5]。

2.2 试块制备

根据产品在生产和使用中可能会出现的三种缺陷类型，设计并制作了4 块试块(图4)，试块1 为制作的过程中加入不同大小的聚四氟乙烯薄膜来模拟不同位置的缺陷。其余3 块试块是在已经成型的产品中切割出来的一部分，试块2 局部不涂刷胶液，模拟产品的缺陷；试块3、试块4 和试块5 根据缺陷的不同使用刀片在不同位置进行切割，让产品产生缺陷，真实模拟产品中的缺陷。

图4 试块1～试块5
Fig.4 Testing blocks

试块1 中的人工缺陷薄膜为聚四氟乙烯薄膜。在碳纤维网格内部及两侧加入直径分别为 40.30，20，10 mm 的缺陷各 5 个。自左向右，第一列为碳纤维网格面板内部加 2 层 0.03 mm 厚的薄膜；第二列为聚酰亚胺薄膜与碳纤维网格面板之间加 2 层 0.03 mm 厚的薄膜；第三列为铝蜂窝与碳纤维网格面板的接触面，加薄膜处不涂刷胶液，同时加 2 层 0.03 mm 厚的薄膜；第四列为碳纤维网格面板与铝蜂窝之间加 2 层 0.03 mm 厚的薄膜，第五列为聚酰亚胺薄膜与碳纤维网格面板的接触面，加薄膜处不涂刷胶液，加 2 层 0.03 mm 厚的薄膜[8]。

试块2 为聚酰亚胺薄膜与碳纤维网格面板之间的脱粘缺陷试块，试块3 为碳纤维网格面板内部的分层缺陷试块，试块4 为碳纤维网格面板与铝蜂窝之间的脱粘缺陷试块，试块5 为碳纤维断裂缺陷试块。

3 参数选择与结果分析

在检测的过程中，通常先选择较低的锁相频率，再逐渐降低频率，较低的频率能够增加材料的热扩散长度和检测更深的区域，增强检测效果[7]。

3.1 锁相频率参数选择

对试块1 采用锁相周期为 7 个，锁相频率为 0.5，0.3，0.1 Hz 分别进行检测，得到结果如表1 和图5 所示。分析差异后选择锁相频率 0.3 Hz。
表 1 不同锁相频率的检测结果数据统计
Tab.1 Data statistics of detection results of different phase-locked frequencies

<table>
<thead>
<tr>
<th>f_r/Hz</th>
<th>缺陷数量</th>
<th>检测结果差异</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>振幅图</td>
<td>相位图</td>
</tr>
</tbody>
</table>

0.1 17 19 图像模糊，噪声大，信噪比小，有漏检
0.3 19 20 图像清晰，噪声小，信噪比大，无漏检
0.5 19 20 图像清晰，噪声小，信噪比小，无漏检

图 5 不同锁相频率检测结果
Fig.5 Different phase-locked frequency detection results

3.2 锁相周期参数选择

对试块 1 使用锁相频率为 0.3 Hz，采用 4, 7, 10 三种不同的锁相周期分别进行检测，得到结果如图 6 所示。得到的振幅图 (a) 和相位图 (b) 的检测结果 (表 2) 基本一致，说明锁相周期对产品检测结果影响较小。

图 6 不同锁相周期的检测结果
Fig.6 Detection results of different phase lock cycles

表 2 不同锁相周期的检测结果统计
Tab.2 Results of different phase lock cycles

<table>
<thead>
<tr>
<th>图像</th>
<th>锁相周期</th>
<th>缺陷个数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Φ_{10mm}</td>
<td>Φ_{20mm}</td>
</tr>
<tr>
<td>振幅</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>相位</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

数据样本越小，进行数据处理时，FFT 计算精度越低。锁相周期为 4 和 7 相比，在检测效率满足的情况下，尽量多的锁相周期能够相应提升图像的信噪比，达到相对较好的检测效果。因此选择锁相周期为 7 个。

3.3 试块检测结果

采用锁相外热成像检测方法，通过确定的检测系统的参数对试块 2~5 进行成像检测，结果由图 7 可见，试块 2 可以检测出聚酰亚胺薄膜与碳纤维网格面板之间的脱粘缺陷，振幅圆圈标记的白色区域为试块中的脱粘缺陷。试块 3 可以检测出碳纤维网格面板内部的分层缺陷。相位圆圈标记的暗黑色的区域为分层缺陷。试块 4 可以检测出碳纤维网格面板与铝蜂窝之间的脱粘缺陷。振幅圆圈标记的暗黑色的区域为脱粘缺陷。试块 5 检测出碳纤维断裂缺陷。振幅圆圈标记的区域为缺陷的位置。

图 7 不同试块检测结果
Fig.7 Different test block results

4 结论

通过锁相外热成像检测方法在 CFRP 网格面板蜂窝夹芯结构的检测应用，表明该方法在锁相频率为 0.3 Hz 和锁相周期为 7 的条件下，能够有效检测出 CFRP 网格面板蜂窝夹芯结构的脱粘缺陷、分层缺陷和碳纤维断裂。

参考文献

[1] 刘元林，梅震，唐庆伟，等．红外热成像检测技术研究现状及发展趋势[J]．机械设计与制造，2015(6)：260~262．
[6] 周伟，孙建辉，邵红亮，等．影响蜂窝结构激光检测的有效参数[J]．无损检测，2015，37(6)：33~36．