en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
GUOZ S,DUS Y,ZHANGB M.Cure kinetics of carbon fiber/bismaleimide prepreg[J].Chinese Journal of Chemical Physics,2004,17(2):219-224.
参考文献 2
RAMISX,CADENATOA,MORANCHOJ M,et al.Curing of a thermosetting powder coating by means of DMTA, TMA and DSC[J].Polymer,2003,44(7):2067-2079.
参考文献 3
汪昆华,罗传秋.聚合物近代仪器分析[M].北京:清华大学出版社,1991:98-133.
参考文献 4
GILLHAMJ K.TBA torsion pendulum:A technique for characterizing the cure and properties of thermosetting systems[J].Polymer International,1997,44(3):262-276.
参考文献 5
LOPEZJ,RAMIREZC,TORRESA,et al.Isothermal curing by dynamic mechanical analysis of three epoxy resin systems:Gelation and vitrification[J].Journal of Applied Polymer Science,2002,83(1):78-85.
参考文献 6
SHIMS B,SEFERISJ C,EOMY S,et al.Thermal characterization and comparison of structural prepregs with different cure temperatures[J].Thermochimica Acta,1997,291(1/2):73-79.
参考文献 7
MARTINJ S,LAZAJ M,MORRASM L,et al.Study of the curing process of a vinyl ester resin by means of TSR and DMTA[J].Polymer,2000,41(11):4203-4211.
参考文献 8
ZHOUN,YUY H,LIP,et al.The effect of sizing agents on curing kinetics of carbon fiber/BMI resin composites by DMTA[J].Polymer Materials Science and Engineering,2008,24(7):125-128.
参考文献 9
HENRYS Y H.Kinetic model of cure reaction and filler effect[J].Journal of Applied Polymer Science,1982,27(9):3265-3277.
参考文献 10
LUM,SHIMM,KIMS.Dynamic DSC characterization of epoxy resin by means of the avrami equation[J].Journal of Thermal Analysis and Calorimetry,1999,58(3):701-709.
参考文献 11
XIEM,ZHANGZ G,GUY Z,et al.Dynamic mechanical analysis of isothermal curing of epoxy prepreg[J].Acta Materiae Compositae Sinica,2009,26(6):78-84.
参考文献 12
YAOY,CHEND,HEP,et al.Cure behavior of epoxy resin/CdS/2,4-EMI nanocomposites investigated by dynamic torsional vibration method(DTVM)[J].Polymer Bulletin,2006,57(2):219-230.
目录 contents

    摘要

    为复合材料成型工艺参数制定提供准确信息,采用动态力学分析法(DMTA)对国产TG800碳纤维/802双马树脂基预浸料等温固化动力学进行研究,根据损耗模量E″在恒温扫描过程中出现的拐点可准确确定固化凝胶点。以储能模量E′相对增长率为固化反应速率指标,考察不同恒温阶段反应程度增长模式,并建立了固化反应动力学模型。分别采用Hsich非平衡热力学涨落理论和Avrami方程对预浸料固化反应过程中活化能变化规律进行分析。结果表明:Hsich理论得出TG800/802预浸料反应活化能为49.5 kJ/mol;Avrami方程得出恒温阶段前期活化能均小于后期,且温度越高对应活化能越低。TG800/802在200 ℃恒温时前期活化能为78.8 kJ/mol,小于后期109 kJ/mol, 温度升高至240 ℃后活化能降至32.4 kJ/mol。通过计算不同恒温阶段固化度佐证了双马树脂固化制度150 ℃/1 h+180 ℃/2 h+200 ℃/4 h的可行性,为TG800/802预浸料的工程化应用提供了技术支撑。

    Abstract

    In order to provide accurate information for the composite material molding process,DMTA was used to investigate the isothermal curing kinetics of domestic TG800 carbon fiber/802 bismaleimide resin prepreg.The gelpoint could be confirmed by apperance of the inflection point of loss modulus "E" under constant temperature scanning.Using the curing reaction rate to define the increasing in storage modulus E′,the growth mode of reaction degree α in different isothermal stage was investigated and the curing kinetics model was established.Hsich’s non-equilibrium thermodynamic fluctuation theory and Avrami equation were used to analysis the activation energy.The results of Hsich’s theory indicated that the activation energy of TG800/802 prepreg is 49.5 kJ/mol.The results of Avrami equation shows that the activation energy at early stage of the isothermal stage is smaller than that in later stage,Besides,the higher isothermal temperature is,the lower activation energy will be.At early stage of 200 ℃ the activation energy of TG800/802 is 78.8 kJ/mol,which is less than 109 kJ/mol in later stage,and it decreases to 32.4 kJ/mol when temperature rises to 240 ℃.According to the calculated results of curing degree in different isothermal stages,the cure cycle “150 ℃/1 h+180 ℃/2 h+200 ℃/4 h” is proved to be feasible,which provides technical support for engineering application of TG800/802 prepreg.

  • 0 引言

    0

    聚合物基复合材料结构件力学、耐热性能很大程度依赖于成型过程中树脂基体的固化反应,因此掌握其固化反应机制并建立准确的固化动力学模型,对于优化固化工艺、预测及提高树脂基复合材料力学性能具有重要指导意义。

    通常采用示差量热扫描法(DSC)研究树脂及预浸料固化反应动力[1],但随着固化反应的进行,树脂官能团减少,测量精度明显下降,难以准确测定凝胶化过程中的细微热量变化,导致固化凝胶点的测定不准[2]。DSC法在测量过程中由于热量变化难以实现等温固化,只给出树脂热学状态的变化,得不到力学性能在固化过程中的真实增长情况,因此限制了其对复合材料实际固化工艺的指导价值。

    DMTA法能够很好地解决上述问题,它是一种研究聚合物微观分子链结构与宏观性能关系的重要手段,其测量参数与制件实际性能相关联,可以精准测量预浸料动态模量在等温固化过程中的变化情况,从而更好地指导复合材料结构件固化工[3]。目前DMTA主要应用于复合材料固化后Tg的测[4,5,6],而利用其研究等温固化过程中力学性能、反应程度变化规律的文献较少。本文主要研究了TG800/802预浸料在等温固化过程中动态力学性能增长规律,以储能模量E′相对增长率为固化反应度指标,考察不同恒温阶段反应程度的增长模式,并建立固化反应动力学模型,采用Hsich非平衡热力学涨落理论和Avrami方程分别对预浸料反应过程中活化能变化规律进行分析。

  • 1 实验

    1
  • 1.1 原材料

    1.1

    TZ800碳纤维,威海拓展有限公司;TG800碳纤维,山西钢科碳材料有限公司;802双马树脂,TG800/802及TZ800/802热熔法预浸料,自制。

  • 1.2 样品制备及测试

    1.2

    采用热熔法预浸工艺制备TG800/802和TZ800/802单向预浸料,树脂含量控制在(34±3)%,挥发分介于5%~10%。将预浸料裁切成尺寸为50 mm×6 mm×2 mm的试样,采用DMTA Ⅳ型动态力学热分析仪(美国科学流变仪器公司)单悬臂梁模式进行DMTA恒温试验。等温固化温度分别为150、180、200、210、220、230、240 ℃,扫描频率为1 Hz,固定形变为0.01,一直进行到储能模量不再变化为止。

  • 2 结果与讨论

    2
  • 2.1 DMTA等温固化表征

    2.1

    TG800/802预浸料在200 ℃等温固化过程的DMTA测试结果如图1所示。可以看出,预浸料动态力学性能大致发生了三个阶段的变化:第一阶段,预浸料E′和E″主要体现为TG800碳纤维模量,模量低且增长缓慢,此时树脂固化反应被引发,主要发生了马来酰亚胺双键的均聚反应及其与烯丙基的交替共聚反应;第二阶段,随着固化反应深入,双马树脂模量对整个预浸料体系的贡献增大,E、E″呈现指数型数量级增长,且E″增长速率超过E′。当体系达到凝胶点时,预浸料中树脂与纤维缠结在一起固化,表现为E″开始下降,曲线形成一个极值,这个极值点称为凝胶点,到达凝胶点所需时间为凝胶化时间,从图1看出凝胶时间为1 350 s,此时阳离子引发聚合物实现了快速链增长、链支化及交联;第三阶段,体系开始进行玻璃化转变,E′、E″变化均趋于平缓,随着时间的推移,各参数达到平衡保持不变,表明等温固化过程结束。

    图1
                            TG800/802预浸料在200 ℃时DMTA等温测试结果

    图1 TG800/802预浸料在200 ℃时DMTA等温测试结果

    Fig.1 Results of DMTA isothermal measurements of TG800/802 prepreg at 200 ℃

    为了定量描述固化过程中预浸料动态力学性能增长情况,采用E′相对力学增长率定义固化反应程度,提出如下方[7,8]

    α = ( E τ - E 0 ) / ( E - E 0 )
    (1)

    式中,α为反应程度,Eτ、E0E为时间t时、初始固化时和完全固化后的储能模量。由(1)式可求出恒温下反应程度α与反应时间t的关系。

    2给出了TG800/802预浸料在不同恒温阶段时反应程度的增长曲线。由图可见,在同一温度下反应程度α呈现缓慢增长—急速增长—缓慢增长的变化趋势。根据热固性双马树脂基体固化反应特性可知,树脂基体依次经历了链引发、链增长、玻璃化转变。另外,随着恒温温度从200 ℃升高至240 ℃,预浸料反应速率也逐渐升高。

    图2
                            不同恒温阶段TG800/802预浸料反应程度变化曲线

    图2 不同恒温阶段TG800/802预浸料反应程度变化曲线

    Fig.2 Curves of reaction degree of TG800/802 prepreg at different isothermal stage

    3是230 ℃恒温固化时TG800/802和TZ800/802预浸料反应程度随时间的变化曲线。TG800/802的反应速率略快于TZ800/802,表明碳纤维上浆剂对复合材料的固化反应几乎没有影响。

    图3
                            230 ℃时TG800/802和TZ800/802预浸料

    图3 230 ℃时TG800/802和TZ800/802预浸料反应程度变化曲线

    Fig.3 Curves of reaction degree of TG800/802 andTZ800/802 prepreg at 230 ℃

  • 2.2 固化动力学分析

    2.2
  • 2.2.1 Hsich非平衡热力学涨落理论计算活化能

    2.2.1

    根据Hsich非平衡热力学涨落理[9],体系恒温固化时动态力学性能随时间变化规律可由下式进行计算:

    ( E t - E 0 ) ( E - E 0 ) = e x p [ - ( t - t 0 τ ) β
    (2)

    式中,EtE0E分别为时间t时、初始固化时和完全固化后的储能模量,τ为固化松弛时间,β为描述松弛谱宽度的常数,与固化反应机理相关。固化松弛过程是指在外力作用下高分子链由原来构象过渡到与外力相适应构象的过程,即高分子链由一种平衡态过渡到另一种平衡态的过程,此过程伴有弹性形变,这主要由于高分子链段的热运动产生的。高分子链段间有内摩擦,弹性形变需要一定的时间才能完成,所需的时间即为松弛时间τ

    t=τ时,有:

    ( E - E τ ) / ( E - E 0 ) = e - 1 = 0.37
    (3)

    在储能模量-时间曲线上,当α=0.63时所对应的时间即为固化松弛时间τ。表1和表2给出了不同温度下TG800/802和TZ800/802预浸料的等温固化参数。可知温度越高,固化松弛时间τ越短。

    表1 TG800/802预浸料等温固化参数

    Tab.1 Isothermal curing parameters of TG800/802 preperg

    T/℃E/GPaE0/GPaEτ/GPaτ/s
    20020.70.13413.92115
    21016.00.080710.11535
    22013.00.05218.211126
    23013.20.07118.38846
    24012.40.05367.84735
    表1
                    TG800/802预浸料等温固化参数

    表2 TZ800/802预浸料等温固化参数

    Tab.2 Isothermal curing parameters of TZ800/802 preperg

    T/℃E/GPaE0/GPaEτ/GPaτ/s
    20022.00.1561.391856
    21018.10.1261.151425
    22018.80.1421.191055
    23018.30.1271.16885
    24017.20.09651.09639
    表2
                    TZ800/802预浸料等温固化参数

    假设固化速率常数与温度的关系遵循Arrhenius方程,且反应机理不受反应程度影响,则有:

    τ = τ 0 e x p E a R T
    (4)

    式中,Ea为固化活化能。将lnτ对1/T作图可得到一条直线,然后从截距得到τ0,从斜率得到固化反应活化能Ea。图4为用(3)式和(4)式拟合DMTA数据得到的TG800/802和TZ800/802预浸料固化动力学曲线。

    图4
                            TG800/802和TZ800/802预浸料固化动力学曲线

    图4 TG800/802和TZ800/802预浸料固化动力学曲线

    Fig.4 Curves curing kinetics of TG800/802 and TZ800/802 prepreg

    3可以看出TG800/802预浸料固化初始松弛时间τ0为6.6 ms,反应活化能Ea为49.5 kJ/mol。TZ800/802预浸料固化初始松弛时间τ0为3.0 ms,反应活化能Ea为52.4 kJ/mol。采用此种方法计算的TG800/802预浸料的反应活化能略小于TZ800/802,即前者反应速率略高于后者,归因于两种预浸料树脂含量不同,动态储能模量增长率有所差异。

    表3 Hsich理论计算预浸料固化动力学参数

    Tab.3 Curing kinetics parameters of prepreg calculated by Hsich’s theory

    预浸料τ0/sEa /kJ·mol-1
    TG800/8026.649.5
    TZ800/8023.052.4
    表3
                    Hsich理论计算预浸料固化动力学参数
  • 2.2.2 采用Avrami方程计算活化能

    2.2.2

    Avrami方程从高分子结晶过程出发,根据热力学方法推导而来,方程如[10,11]

    1 - α = e x p ( - k t n )
    (5)

    式中,α为反应程度,k为速率常数,n为Avrami增长指数。将(5)式带入(1)式,可得:

    1 - α = e x p [ ( - ( t / τ ) β ]
    (6)

    对(6)式两边取对数,可得:

    l n [ - l n ( 1 - α ) ] = l n k + n l n t
    (7)

    应用(7)式对TG800/802预浸料DMTA数据进行线性拟合,得到斜率n和截距lnk

    5给出了两种预浸料的ln[-ln(1-α)]—lnt曲线图。可以看出,斜率n的线性关系大致分为两段。表4是不同温度下Avrami指数n和速率常数k的拟合结果,可见在不同恒温温度下均有n2<n1n是描述增长行为的参数,表明反应程度α的增长机制随着固化时间的推移发生了变化,由化学控制转变为扩散控制,反应速率变化趋于平缓。

    /html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image005.jpeg

    (a) TG800/802

    /html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image006.jpeg

    (b) TZ800/802

    图5 两种预浸料的ln[-ln(1-α)]—lnt曲线图

    Fig.5 ln[-ln(1-α)]—lnt curves of TG800/802 and TZ800/802 prepreg

    表4 Avrami指数n和速率常数k的拟合结1)

    Tab.4 The fitting results of the Avrami index n and rate constant k

    T/℃增长指数速率常数相关系数
    n1n2lnk1lnk2R1R2
    l1l2l1l2l1l2l1l2l1l2l1l2
    2004.395.270.510.62-33-39.6-3.86-4.810.930.970.920.96
    2106.255.20.590.5-44-37.5-3.46-3.380.990.950.970.94
    2207.355.390.450.42-49.1-37.4-2.84-2.580.940.960.940.92
    2308.327.020.440.41-53.7-46.3-2.66-2.290.990.960.910.97
    2408.937.580.450.35-56.2-47.6-2.62-1.810.970.980.950.97
    表4
                    Avrami指数n和速率常数k的拟合结果1)

    注:1)l1为TG800/802预浸料;l2为TG800/802预浸料。

    kT之间存在经验公式,如下[12]

    k 1 / n = k 0 e x p ( - E a / R T )
    (8)

    对(8)式两端求对数,可得出固化过程中的反应活化能:

    ( 1 / n ) l n k = l n k 0 - ( E a / R T )
    (9)

    (9)式中线性关系如图6所示,可由斜率计算出不同温度区间内固化反应活化能。可以看出,不同温度区间斜率不同,表明固化反应活化能不同,反应程度α的增长机制也发生改变。

    活化能计算结果如表5所示,可见同一恒温阶段前期活化能均小于后期,归因于α增长速率逐渐减小。恒温温度越高对应的活化能越低,是由于温度越高α增长速率越快。同一温度下,TG800/802预浸料活化能略低于TZ800/802,表明前者反应速率略高于后者。通过Hsich非平衡热力学涨落理论和Avrami方程计算的固化反应活化能数值虽有所差异,但反应速率均呈现出先快后慢的变化趋势,侧面验证了反应机制的变化。

    /html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image007.jpeg

    (a) TG800/802

    /html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image008.jpeg

    (b) TZ800/802

    图6 两种预浸料ln[-ln(1-α)]—lnt曲线线性区对应的(1/n)lnk—1/T关系

    Fig.6 (1/n)lnk—1/T relationship for the linear segments of the ln[-ln(1-α)]—lnt curves of TG800/802 and TZ800/802 prepreg

    表5 Avrami方程计算TG800/802和TZ800/802(预浸料固化反应活化能)

    Tab.5 Activation energy during the cure process of TG800/802 and TZ800/802 prepreg by Avrami equation(预浸料固化反应活化能)

    预浸料Ea/kJ·mol-1
    200 ℃210 ℃220 ℃230 ℃240 ℃
    TG800/802(1/n1)lnk1·T78.878.862.046.732.4
    (1/n2)lnk2·T10910892.754.547.3
    TZ800/802(1/n1)lnk1·T80.080.072.470.668.7
    (1/n2)lnk2·T11311310894.089.0
    表5
                    Avrami方程计算TG800/802和TZ800/802
  • 2.3 固化工艺参数分析

    2.3

    对TG800/802预浸料依照150 ℃/1 h+ 180 ℃/2 h+200 ℃/4 h固化制度进行了DMTA验证,三个阶段的反应程度如图7所示。

    图7
                            TG800/802预浸料固化过程中反应程度变化曲线

    图7 TG800/802预浸料固化过程中反应程度变化曲线

    Fig.7 Curves of reaction degree during curing process of TG800/802 prepreg

    在2.25 h出现了E″拐点,即固化凝胶点;凝胶阶段150 ℃/1 h,固化度可达36%,固化阶段180 ℃/2 h,固化度可达91%;后固化阶段200 ℃/4 h,固化度可达99%以上。在凝胶阶段,树脂体系主要通过“ENE”反应进行扩链,反应程度的增加主要依靠延长反应时间。在固化阶段,反应速度迅速增加,这时固化反应主要是分子间的交联与环化。将后固化温度确定为200 ℃/4 h,目的是消除内应力,提高交联密度,从而提高产品力学性能。通过固化反应动力学的计算结果验证了固化制度的可行性,表明TG800/802预浸料固化工艺参数设置合理,预浸料能够完全固化,有利保证了复合材料构件的力学性能。

  • 3 结论

    3

    (1)采用DMTA法对TG800/802预浸料进行恒温扫描,结果表明预浸料动态力学性能呈现缓慢增长-急速增长-缓慢增长的变化趋势,通过此方法可准确确定固化凝胶点,TG800/802在200 ℃等温固化时凝胶时间为1 350 s。

    (2)Hsich理论得出TG800/802反应活化能为49.5 kJ/mol。Avrami方程得出恒温阶段前期活化能均小于后期,且温度越高对应活化能越低。TG800/802在200 ℃恒温时前期活化能为78.8 kJ/mol,小于后期109 kJ/mol, 温度升高至240 ℃后活化能降至32.4 kJ/mol。两种方法得到的反应速率均呈现先快后慢的增长趋势,表明反应机制由化学控制转变为扩散控制。

    (3)通过DMTA对TG800/802固化制度150 ℃/1 h+ 180 ℃/2 h+200 ℃/4 h进行了验证:在2.25 h出现了E″拐点,即固化凝胶点;凝胶阶段150 ℃/1 h,固化度可达36%,固化阶段180 ℃/2 h,固化度可达91%;后固化阶段200 ℃/4 h,固化度可达99%以上。表明固化工艺参数设置合理,TG800/802预浸料能够完全固化。

  • 参考文献

    • 1

      GUO Z S,DU S Y,ZHANG B M.Cure kinetics of carbon fiber/bismaleimide prepreg[J].Chinese Journal of Chemical Physics,2004,17(2):219-224.

    • 2

      RAMIS X,CADENATO A,MORANCHO J M,et al.Curing of a thermosetting powder coating by means of DMTA, TMA and DSC[J].Polymer,2003,44(7):2067-2079.

    • 3

      汪昆华,罗传秋.聚合物近代仪器分析[M].北京:清华大学出版社,1991:98-133.

    • 4

      GILLHAM J K.TBA torsion pendulum:A technique for characterizing the cure and properties of thermosetting systems[J].Polymer International,1997,44(3):262-276.

    • 5

      LOPEZ J,RAMIREZ C,TORRES A,et al.Isothermal curing by dynamic mechanical analysis of three epoxy resin systems:Gelation and vitrification[J].Journal of Applied Polymer Science,2002,83(1):78-85.

    • 6

      SHIM S B,SEFERIS J C,EOM Y S,et al.Thermal characterization and comparison of structural prepregs with different cure temperatures[J].Thermochimica Acta,1997,291(1/2):73-79.

    • 7

      MARTIN J S,LAZA J M,MORRAS M L,et al.Study of the curing process of a vinyl ester resin by means of TSR and DMTA[J].Polymer,2000,41(11):4203-4211.

    • 8

      ZHOU N,YU Y H,LI P,et al.The effect of sizing agents on curing kinetics of carbon fiber/BMI resin composites by DMTA[J].Polymer Materials Science and Engineering,2008,24(7):125-128.

    • 9

      HENRY S Y H.Kinetic model of cure reaction and filler effect[J].Journal of Applied Polymer Science,1982,27(9):3265-3277.

    • 10

      LU M,SHIM M,KIM S.Dynamic DSC characterization of epoxy resin by means of the avrami equation[J].Journal of Thermal Analysis and Calorimetry,1999,58(3):701-709.

    • 11

      XIE M,ZHANG Z G,GU Y Z,et al.Dynamic mechanical analysis of isothermal curing of epoxy prepreg[J].Acta Materiae Compositae Sinica,2009,26(6):78-84.

    • 12

      YAO Y,CHEN D,HE P,et al.Cure behavior of epoxy resin/CdS/2,4-EMI nanocomposites investigated by dynamic torsional vibration method(DTVM)[J].Polymer Bulletin,2006,57(2):219-230.

陈薇

机 构:航天材料及工艺研究所,北京 100076

Affiliation:Aerospace Research Institute of Materials&Processing Technology,Beijing 100076

角 色:第一作者

Role:First author

邮 箱:chenweijane@126.com

第一作者简介:陈薇,1990年出生,博士,主要从事复合材料成型工艺研究工作。E-mail:chenweijane@126.com

李健芳

机 构:航天材料及工艺研究所,北京 100076

Affiliation:Aerospace Research Institute of Materials&Processing Technology,Beijing 100076

王树浩

机 构:火箭军驻首都航天机械有限公司军事代表室,北京 100076

Affiliation:Military Representative Office of Rocket Army Stationed in Capital Aerospace Machinery Company,Beijing 100076

于雅琳

机 构:航天材料及工艺研究所,北京 100076

Affiliation:Aerospace Research Institute of Materials&Processing Technology,Beijing 100076

王乐辰

机 构:航天材料及工艺研究所,北京 100076

Affiliation:Aerospace Research Institute of Materials&Processing Technology,Beijing 100076

/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image001.jpeg
/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image002.jpeg
/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image003.jpeg
T/℃E/GPaE0/GPaEτ/GPaτ/s
20020.70.13413.92115
21016.00.080710.11535
22013.00.05218.211126
23013.20.07118.38846
24012.40.05367.84735
T/℃E/GPaE0/GPaEτ/GPaτ/s
20022.00.1561.391856
21018.10.1261.151425
22018.80.1421.191055
23018.30.1271.16885
24017.20.09651.09639
/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image004.jpeg
预浸料τ0/sEa /kJ·mol-1
TG800/8026.649.5
TZ800/8023.052.4
/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image005.jpeg
/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image006.jpeg
T/℃增长指数速率常数相关系数
n1n2lnk1lnk2R1R2
l1l2l1l2l1l2l1l2l1l2l1l2
2004.395.270.510.62-33-39.6-3.86-4.810.930.970.920.96
2106.255.20.590.5-44-37.5-3.46-3.380.990.950.970.94
2207.355.390.450.42-49.1-37.4-2.84-2.580.940.960.940.92
2308.327.020.440.41-53.7-46.3-2.66-2.290.990.960.910.97
2408.937.580.450.35-56.2-47.6-2.62-1.810.970.980.950.97
/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image007.jpeg
/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image008.jpeg
预浸料Ea/kJ·mol-1
200 ℃210 ℃220 ℃230 ℃240 ℃
TG800/802(1/n1)lnk1·T78.878.862.046.732.4
(1/n2)lnk2·T10910892.754.547.3
TZ800/802(1/n1)lnk1·T80.080.072.470.668.7
(1/n2)lnk2·T11311310894.089.0
/html/yhclgy/184369/media/b1b724ff-d405-4b2e-993e-0b149d21d34e-image009.jpeg

图1 TG800/802预浸料在200 ℃时DMTA等温测试结果

Fig.1 Results of DMTA isothermal measurements of TG800/802 prepreg at 200 ℃

图2 不同恒温阶段TG800/802预浸料反应程度变化曲线

Fig.2 Curves of reaction degree of TG800/802 prepreg at different isothermal stage

图3 230 ℃时TG800/802和TZ800/802预浸料反应程度变化曲线

Fig.3 Curves of reaction degree of TG800/802 andTZ800/802 prepreg at 230 ℃

表1 TG800/802预浸料等温固化参数

Tab.1 Isothermal curing parameters of TG800/802 preperg

表2 TZ800/802预浸料等温固化参数

Tab.2 Isothermal curing parameters of TZ800/802 preperg

图4 TG800/802和TZ800/802预浸料固化动力学曲线

Fig.4 Curves curing kinetics of TG800/802 and TZ800/802 prepreg

表3 Hsich理论计算预浸料固化动力学参数

Tab.3 Curing kinetics parameters of prepreg calculated by Hsich’s theory

图5 两种预浸料的ln[-ln(1-α)]—lnt曲线图 -- (a) TG800/802

Fig.5 ln[-ln(1-α)]—lnt curves of TG800/802 and TZ800/802 prepreg -- (a) TG800/802

图5 两种预浸料的ln[-ln(1-α)]—lnt曲线图 -- (b) TZ800/802

Fig.5 ln[-ln(1-α)]—lnt curves of TG800/802 and TZ800/802 prepreg -- (b) TZ800/802

表4 Avrami指数n和速率常数k的拟合结1)

Tab.4 The fitting results of the Avrami index n and rate constant k

图6 两种预浸料ln[-ln(1-α)]—lnt曲线线性区对应的(1/n)lnk—1/T关系 -- (a) TG800/802

Fig.6 (1/n)lnk—1/T relationship for the linear segments of the ln[-ln(1-α)]—lnt curves of TG800/802 and TZ800/802 prepreg -- (a) TG800/802

图6 两种预浸料ln[-ln(1-α)]—lnt曲线线性区对应的(1/n)lnk—1/T关系 -- (b) TZ800/802

Fig.6 (1/n)lnk—1/T relationship for the linear segments of the ln[-ln(1-α)]—lnt curves of TG800/802 and TZ800/802 prepreg -- (b) TZ800/802

表5 Avrami方程计算TG800/802和TZ800/802(预浸料固化反应活化能)

Tab.5 Activation energy during the cure process of TG800/802 and TZ800/802 prepreg by Avrami equation(预浸料固化反应活化能)

图7 TG800/802预浸料固化过程中反应程度变化曲线

Fig.7 Curves of reaction degree during curing process of TG800/802 prepreg

image /

无注解

无注解

反应程度变化曲线

无注解

无注解

无注解

无注解

无注解

无注解

1)l1为TG800/802预浸料;l2为TG800/802预浸料。

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      GUO Z S,DU S Y,ZHANG B M.Cure kinetics of carbon fiber/bismaleimide prepreg[J].Chinese Journal of Chemical Physics,2004,17(2):219-224.

    • 2

      RAMIS X,CADENATO A,MORANCHO J M,et al.Curing of a thermosetting powder coating by means of DMTA, TMA and DSC[J].Polymer,2003,44(7):2067-2079.

    • 3

      汪昆华,罗传秋.聚合物近代仪器分析[M].北京:清华大学出版社,1991:98-133.

    • 4

      GILLHAM J K.TBA torsion pendulum:A technique for characterizing the cure and properties of thermosetting systems[J].Polymer International,1997,44(3):262-276.

    • 5

      LOPEZ J,RAMIREZ C,TORRES A,et al.Isothermal curing by dynamic mechanical analysis of three epoxy resin systems:Gelation and vitrification[J].Journal of Applied Polymer Science,2002,83(1):78-85.

    • 6

      SHIM S B,SEFERIS J C,EOM Y S,et al.Thermal characterization and comparison of structural prepregs with different cure temperatures[J].Thermochimica Acta,1997,291(1/2):73-79.

    • 7

      MARTIN J S,LAZA J M,MORRAS M L,et al.Study of the curing process of a vinyl ester resin by means of TSR and DMTA[J].Polymer,2000,41(11):4203-4211.

    • 8

      ZHOU N,YU Y H,LI P,et al.The effect of sizing agents on curing kinetics of carbon fiber/BMI resin composites by DMTA[J].Polymer Materials Science and Engineering,2008,24(7):125-128.

    • 9

      HENRY S Y H.Kinetic model of cure reaction and filler effect[J].Journal of Applied Polymer Science,1982,27(9):3265-3277.

    • 10

      LU M,SHIM M,KIM S.Dynamic DSC characterization of epoxy resin by means of the avrami equation[J].Journal of Thermal Analysis and Calorimetry,1999,58(3):701-709.

    • 11

      XIE M,ZHANG Z G,GU Y Z,et al.Dynamic mechanical analysis of isothermal curing of epoxy prepreg[J].Acta Materiae Compositae Sinica,2009,26(6):78-84.

    • 12

      YAO Y,CHEN D,HE P,et al.Cure behavior of epoxy resin/CdS/2,4-EMI nanocomposites investigated by dynamic torsional vibration method(DTVM)[J].Polymer Bulletin,2006,57(2):219-230.